2022-2023学年吉林省延边市汪清县第六中学高一数学第二学期期末综合测试试题含解析_第1页
2022-2023学年吉林省延边市汪清县第六中学高一数学第二学期期末综合测试试题含解析_第2页
2022-2023学年吉林省延边市汪清县第六中学高一数学第二学期期末综合测试试题含解析_第3页
2022-2023学年吉林省延边市汪清县第六中学高一数学第二学期期末综合测试试题含解析_第4页
2022-2023学年吉林省延边市汪清县第六中学高一数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点作抛物线的两条切线,切点为,则的面积为()A. B. C. D.2.函数的图像大致为()A. B. C. D.3.要得到函数y=sin2x-πA.向左平行移动π3个单位 B.向右平行移动πC.向右平行移动π3个单位 D.向左平行移动π4.在中,已知,则等于()A. B.C.或 D.或5.已知,那么等于()A. B. C. D.56.已知锐角满足,则()A. B. C. D.7.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为A.2 B.4 C.6 D.88.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.9.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.10.若,则的大小关系为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的前n项和为,若,,,则________12.若角的终边经过点,则的值为________13.展开式中,各项系数之和为,则展开式中的常数项为__________.14.已知空间中的三个顶点的坐标分别为,则BC边上的中线的长度为________.15.已知数列中,其前项和为,,则_____.16.数列的前项和,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(其中).(1)当时,求不等式的解集;(2)若关于的不等式恒成立,求的取值范围.18.设为数列的前项和,.(1)求证:数列是等比数列;(2)求证:.19.已知函数,.(I)求函数的最小正周期.(II)求函数的单调递增区间.(III)求函数在区间上的最小值和最大值.20.已知的三个顶点分别为,,,求:(1)边上的高所在直线的方程;(2)的外接圆的方程.21.从甲、乙、丙、丁四个人中选两名代表,求:(1)甲被选中的概率;(2)丁没被选中的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】设抛物线过点的切线方程为,即,将点代入可得,同理都满足方程,即为直线的方程为,与抛物线联立,可得,点到直线的距离,则的面积为,故选B.【方法点晴】本题主要考查利用导数求曲线切线方程以及弦长公式与点到直线距离公式,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.2、A【解析】

先判断函数为偶函数排除;再根据当时,,排除得到答案.【详解】,偶函数,排除;当时,,排除故选:【点睛】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.3、B【解析】

把y=sin【详解】由题得y=sin所以要得到函数y=sin2x-π3的图象,只要将函数故选:B【点睛】本题主要考查三角函数的图像变换,意在考查学生对该知识的理解掌握水平,属于基础题.4、C【解析】在中,已知,由余弦定理,即,解得或,又,或,故选C.5、B【解析】

因为,所以,故选B.6、D【解析】

根据为锐角可求得,根据特殊角三角函数值可知,从而得到,进而求得结果.【详解】,又,即本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够熟悉特殊角的三角函数值,根据角的范围确定特殊角的取值.7、A【解析】

根据平均数相同求出x的值,再根据方差的定义计算即可.【详解】根据茎叶图中的数据知,甲、乙二人的平均成绩相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均数为=90;根据茎叶图中的数据知甲的成绩波动性小,较为稳定(方差较小),所以甲成绩的方差为s1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故选A.【点睛】茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况.8、B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.9、B【解析】

首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.10、A【解析】

利用作差比较法判断得解.【详解】①,∵,∴,故.②∵,∴,所以a>ab.综上,故选A.【点睛】本题主要考查作差比较法比较实数的大小,意在考查学生对该知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由题意首先求得数列的公差,然后结合通项公式确定m的值即可.【详解】根据题意,设等差数列公差为d,则,又由,,则,,则,解可得;故答案为1.【点睛】本题考查等差数列的性质,关键是掌握等差数列的通项公式,属于中等题.12、.【解析】

根据三角函数的定义求出的值,然后利用反三角函数的定义得出的值.【详解】由三角函数的定义可得,,故答案为.【点睛】本题考查三角函数的定义以及反三角函数的定义,解本题的关键就是利用三角函数的定义求出的值,考查计算能力,属于基础题.13、【解析】令,则,即,因为的展开式的通项为,所以展开式中常数项为,即常数项为.点睛:本题考查二项式定理;求二项展开式的各项系数的和往往利用赋值法(常赋值为),还要注意整体赋值,且要注意展开式各项系数和二项式系数的区别.14、【解析】

先求出BC的中点,由此能求出BC边上的中线的长度.【详解】解:因为空间中的三个顶点的坐标分别为,所以BC的中点为,所以BC边上的中线的长度为:,故答案为:.【点睛】本题考查三角形中中线长的求法,考查中点坐标公式、两点间距离的求法等基础知识,考查运算求解能力,是基础题.15、1【解析】

本题主要考查了已知数列的通项式求前和,根据题目分奇数项和偶数项直接求即可。【详解】,则.故答案为:1.【点睛】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、裂项相消等。本题主要利用了分组求和的方法。属于基础题。16、【解析】

根据数列前项和的定义即可得出.【详解】解:因为所以.故答案为:.【点睛】考查数列的定义,以及数列前项和的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】

(1)先由,将不等式化为,直接求解,即可得出结果;(2)先由题意得到恒成立,根据含绝对值不等式的性质定理,得到,从而可求出结果.【详解】(1)当时,求不等式,即为,所以,即或,原不等式的解集为或.(2)不等式,即为,即关于的不等式恒成立.而,所以,解得或,解得或.所以的取值范围是.【点睛】本题主要考查含绝对值不等式的解法,以及由不等式恒成立求参数的问题,熟记不等式的解法,以及绝对值不等式的性质定理即可,属于常考题型.18、(1)见解析;(2)见解析.【解析】

(1)令,由求出的值,再令,由得,将两式相减并整理得,计算出为非零常数可证明出数列为等比数列;(2)由(1)得出,可得出,利用放缩法得出,利用等比数列求和公式分别求出数列和的前项和,从而可证明出所证不等式成立.【详解】(1)当时,,解得;当时,由得,上述两式相减得,整理得.则,且.所以,数列是首项为,公比为的等比数列;(2)由(1)可知,则.因为,所以.又因为,所以.综上,.【点睛】本题考查利用前项和求数列通项,考查等比数列的定义以及放缩法证明数列不等式,解题时要根据数列递推公式或通项公式的结构选择合适的方法进行求解,考查分析问题和解决问题的能力,属于中等题.19、(I)的最小正周期;(II)的单调递增区间为;(III);【解析】试题分析;(1)化函数f(x)为正弦型函数,求出f(x)的最小正周期;(2)根据正弦函数的单调性求出f(x)的单调增区间;(3)根据x的取值范围求出2x+的取值范围,从而求出f(x)的最值(I)因此,函数的最小正周期.(II)由得:.即函数的单调递增区间为.(III)因为所以所以20、(1)2x+y-2=0;(2)x2+y2+2x+2y-8=0【解析】

(1)根据高与底边所在直线垂直确定斜率,再由其经过点,从而由点斜式得到高所在直线方程,再写成一般式.(2)设出的外接圆的一般方程,将三个顶点坐标代入得到关于的方程组,从而求出外接圆的方程.【详解】(1)直线AB的斜率为,AB边上的高所在直线的斜率为-2,则AB边上的高所在直线的方程为y+2=-2(x-2),即2x+y-2=0(2)设△ABC的外接圆的方程为x2+y2+Dx+Ey+F=0由,解之可得故△ABC的外接圆的方程为x2+y2+2x+2y-8=0【点睛】主要考查了直线方程与圆的方程的求解,属于基础题.21、(1);(2).【解析】

(1)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定甲被选中的事件数,最后根据古典概型概率公式求概率(2)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定丁没被选中的事件数,最后根据古典概型概率公式求概率.【详解】(1)从甲、乙、丙、丁四个人中选两名代表共有:甲乙,甲丙,甲丁,乙丙,乙丁、丙丁共6种基本事件,其中甲被

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论