版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.直线l:与圆C:的位置关系是A.相切 B.相离C.相交 D.不确定2.已知定义域为的函数满足:,且,当时,,则等于A. B.C.2 D.43.棱长分别为1、、2的长方体的8个顶点都在球的表面上,则球的体积为A. B.C. D.4.定义在上的奇函数,当时,,则的值域是A. B.C. D.5.已知,则三者的大小关系是A. B.C. D.6.设都是非零向量,下列四个条件中,一定能使成立的是()A. B.//C. D.7.下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则8.下列函数中既是偶函数,又在上单调递增的是()A B.C. D.9.已知,则、、的大小关系为()A. B.C. D.10.函数在上的图象为A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数,若函数有三个零点,则实数的取值范围是________.12.已知函数若函数有三个不同的零点,且,则的取值范围是____13.已知函数的图象上关于轴对称的点恰有9对,则实数的取值范围_________.14.已知圆心为(1,1),经过点(4,5),则圆标准方程为_____________________.15.在平面直角坐标系中,动点P到两条直线与的距离之和等于2,则点P到坐标原点的距离的最小值为_________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.函数.(1)用五点作图法画出函数一个周期图象,并求函数的振幅、周期、频率、相位;(2)此函数图象可由函数怎样变换得到.17.若函数在定义域内存在实数,使得成立,则称函数有“飘移点”Ⅰ试判断函数及函数是否有“飘移点”并说明理由;Ⅱ若函数有“飘移点”,求a的取值范围18.已知函数的图象关于原点对称,且当时,(1)试求在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.19.已知函数是定义在1,1上的奇函数,且.(1)求m,n的值;(2)判断在1,1上的单调性,并用定义证明;(3)设,若对任意的,总存在,使得成立,求实数k的值.20.我国是世界上人口最多的国家,1982年十二大,计划生育被确定为基本国策.实行计划生育,严格控制人口增长,坚持少生优生,这是直接关系到人民生活水平的进一步提高,也是造福子孙后代的百年大计.(1)据统计1995年底,我国人口总数约12亿,如果人口的自然年增长率控制在1%,到2020年底我国人口总数大约为多少亿(精确到亿);(2)当前,我国人口发展已经出现转折性变化,2015年10月26日至10月29日召开的党的十八届五中全会决定,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子政策,积极开展应对人口老龄化行动.这是继2013年,十八届三中全会决定启动实施“单独二孩”政策之后的又一次人口政策调整.据统计2015年中国人口实际数量大约14亿,若实行全面两孩政策后,预计人口年增长率实际可达1%,那么需经过多少年我国人口可达16亿.(参考数字:,,,)21.用定义法证明函数在上单调递增
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】利用点到直线的距离公式求出直线和圆的距离,即可作出判断.【详解】圆C:的圆心坐标为:,则圆心到直线的距离,所以圆心在直线l上,故直线与圆相交故选C【点睛】本题考查的知识要点:直线与圆的位置关系的应用,点到直线的距离公式的应用2、D【解析】由得,又由得函数为偶函数,所以选D3、A【解析】球的直径为长方体的体对角线,又体对角线的长度为,故体积为,选A.4、B【解析】根据函数为奇函数得到,,再计算时,得到答案.【详解】定义在上的奇函数,则,;当时,,则当时,;故的值域是故选:【点睛】本题考查了函数的值域,根据函数的奇偶性得到时,是解题的关键.5、C【解析】a=log30.2<0,b=30.2>1,c=0.30.2∈(0,1),∴a<c<b故选C点睛:这个题目考查的是比较指数和对数值的大小;一般比较大小的题目,常用的方法有:先估算一下每个数值,看能否根据估算值直接比大小;估算不行的话再找中间量,经常和0,1,-1比较;还可以构造函数,利用函数的单调性来比较大小.6、D【解析】由得若,即,则向量共线且方向相反,因此当向量共线且方向相反时,能使成立,本题选择D选项.7、C【解析】当时,不正确;当时,不正确;正确;当时,不正确.【详解】对于,当时,不成立,不正确;对于,当时,不成立,不正确;对于,若,则,正确;对于,当时,不成立,不正确.故选:C.【点睛】关键点点睛:利用不等式的性质求解是解题关键.8、C【解析】根据常见函数的单调性和奇偶性,即可容易判断选择.【详解】根据题意,依次分析选项:对于A,,奇函数,不符合题意;对于B,,为偶函数,在上单调递减,不符合题意;对于C,,既是偶函数,又在上单调递增,符合题意;对于D,为奇函数,不符合题意;故选:C.【点睛】本题考查常见函数单调性和奇偶性的判断,属简单题.9、A【解析】借助中间量比较大小即可.【详解】解:因为,所以.故选:A10、B【解析】直接利用函数的性质奇偶性求出结果【详解】函数的解析式满足,则函数为奇函数,排除CD选项,由可知:,排除A选项.故选B.【点睛】本题考查的知识要点:函数的性质的应用.属中档题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】作出函数图象,进而通过数形结合求得答案.【详解】问题可以转化为函数的图象与直线有3个交点,如图所示:所以时满足题意.故答案为:.12、;【解析】作图可知:点睛:利用函数零点情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.13、【解析】求出函数关于轴对称的图像,利用数形结合可得到结论.【详解】若,则,,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即则,解得,故答案为【点睛】解分段函数或两个函数对称性的题目时,可先将一个函数的对称图像求出,利用数形结合的方式得出参数的取值范围;遇到题目中指对函数时,需要讨论底数的范围,分别画出图像进行讨论.14、【解析】设出圆的标准方程,代入点的坐标,求出半径,求出圆的标准方程【详解】设圆的标准方程为(x-1)2+(y-1)2=R2,由圆经过点(4,5)得R2=25,从而所求方程为(x-1)2+(y-1)2=25,故答案为(x-1)2+(y-1)2=25【点睛】本题主要考查圆的标准方程,利用了待定系数法,关键是确定圆的半径15、【解析】∵3x﹣y=0与x+3y=0的互相垂直,且交点为原点,∴设点P到两条直线的距离分别为a,b,则a≥0,b≥0,则a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴当a=1时,的距离,故答案为三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)答案见解析(2)答案见解析【解析】(1)由分别等于,计算描点作图,并由三角函数性质求解(2)根据三角函数图象变换规则作答【小问1详解】列表:0020-20描点连线(如图):振幅:2,周期,频率,相位:【小问2详解】把的图象向右平移个单位,然后图象上所有点的的横坐标扩大为原来的3倍,纵坐标不变,再把所得图象上所有点的横坐标不变,纵坐标扩大为原来的2倍,得图象的解析式为17、(Ⅰ)函数有“飘移点”,函数没有“飘移点”.证明过程详见解析(Ⅱ)【解析】Ⅰ按照“飘移点”的概念,只需方程有根即可,据此判断;Ⅱ由题得,化简得,可得,可求>,解得a范围【详解】Ⅰ函数有“飘移点”,函数没有“飘移点”,证明如下:设在定义域内有“飘移点”,所以:,即:,解得:,所以函数在定义域内有“飘移点”是0;设函数有“飘移点”,则,即由此方程无实根,与题设矛盾,所以函数没有飘移点Ⅱ函数的定义域是,因为函数有“飘移点”,所以:,即:,化简可得:,可得:,因为,所以:,所以:,因为当时,方程无解,所以,所以,因为函数的定义域是,所以:,即:,因为,所以,即:,所以当时,函数有“飘移点”【点睛】本题考查了函数的方程与函数间的关系,即利用函数思想解决方程根的问题,利用方程思想解决函数的零点问题,由转化为关于方程在有解是本题关键.18、(1)(2)函数图象见解析,单调递增区间为和,单调递减区间为;【解析】(1)依题意是上的奇函数,即可得到,再设,根据时的解析式及奇函数的性质计算可得;(2)由(1)中的解析式画出函数图形,结合图象得到函数的单调区间;【小问1详解】解:的图象关于原点对称,是奇函数,又的定义域为,,解得设,则,当时,,,所以;【小问2详解】解:由(1)可得的图象如下所示:由图象可知的单调递增区间为和,单调递减区间为;19、(1),(2)在上递增,证明见解析(3)【解析】(1)由为1,1上奇函数可得,再结合可求出m,n的值;(2)直接利用单调性的定义判断即可,(3)由题意可得,而,然后分,和三种情况求解的最大值,使其最大值大于等于,解不等式可得结果【小问1详解】依题意函数是定义在上的奇函数,所以,∴,所以,经检验,该函数为奇函数.【小问2详解】在上递增,证明如下:任取,其中,,所以,故在上递增.【小问3详解】由于对任意的,总存在,使得成立,所以.当,恒成立当时,在上递增,,所以.当时,在上递减,,所以.综上所述,20、(1)15;(2)14年.【解析】(1)先判定到2020年底历经的总年数,再利用增长率列式计算即可;(2)设经过x年达16亿,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农村自建房承建与农村新能源利用合作合同
- 二零二五年度形婚双方婚姻关系协议及婚后财产分割与子女抚养安排3篇
- 二零二五年度文化创意产业园区场地转租合同3篇
- 2025年度高新技术研发贷款担保协议3篇
- 2025年度消防安全设施设备安装与验收协议3篇
- 2025年度内墙粉刷施工与室内空气净化技术合作合同3篇
- 二零二五年度生猪养殖与农产品市场销售合作合同范本3篇
- 2025年度公司对个人创业团队对赌合同3篇
- 二零二五年度企业车辆共享平台使用服务合同3篇
- 2025年度公司与公司签订的体育产业合作发展协议2篇
- 领导科学全套精讲课件
- 粤教版地理七年级下册全册课件
- 排水管渠及附属构筑物
- 养猪场施工噪声环境影响分析
- Windows-Server-2012网络服务架构课件(完整版)
- 形位公差_很详细(基础教育)
- 手榴弹使用教案
- 600MW机组除氧器水位控制系统
- 史上最全的涉税风险
- 初中数学问题情境的创设
- 电力设备典型消防规程.ppt
评论
0/150
提交评论