版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:第一档水量为240立方米/户年及以下部分;第二档水量为240立方米/户年以上至360立方米/户年部分(含360立方米/户年);第三档水量为360立方米/户年以上部分.家庭常住人口在4人(不含4人)以上的多人口户,凭户口簿,其水量按每增加一人各档水量递增50立方米/年确定.第一档用水价格为2.1元/立方米;第二档用水价格为3.2元/立方米;第三档用水价格为6.3元/立方米.小明家中共有6口人,去年整年用水花费了1602元,则小明家去年整年的用水量为().A.474立方米 B.482立方米C.520立方米 D.540立方米2.已知函数f(x)是偶函数,且f(x)在上是增函数,若,则不等式的解集为()A.{x|x>2} B.C.{或x>2} D.{或x>2}3.下列函数中,既是偶函数,又在区间上单调递减的是()A. B.C. D.4.设,则()A. B.aC. D.5.下列直线中,倾斜角为45°的是()A. B.C. D.6.已知直线,若,则的值为()A.8 B.2C. D.-27.为了得到函数的图象,只需把函数的图象()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度8.已知菱形的边长为2,,点分别在边上,,.若,则等于()A. B.C. D.9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点C的坐标是A. B.C. D.10.若曲线与直线始终有交点,则的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某租赁公司拥有汽车100辆.当每辆车的月租金为元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.若使租赁公司的月收益最大,每辆车的月租金应该定为__________12.若是定义在R上的奇函数,当时,(为常数),则当时,_________.13.已知函数()的部分图象如图所示,则的解析式是___________.14.已知,则的值为________15.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是______答案】16.函数是幂函数,且在上是减函数,则实数__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求不等式的解集;(2)若有两个不同的实数根,求a的取值范围18.已知函数,()求函数的单调区间;()若函数在上有两个零点,求实数的取值范围19.已知的三个顶点(1)求边上高所在直线的方程;(2)求的面积20.函数(,)的图象关于直线对称,且图象上相邻两个最高点的距离为(1)求函数的解析式以及它的单调递增区间;(2)是否存在实数,满足不等式?若存在,求出的取值范围;若不存在,请说明理由21.已知定义域为的函数是奇函数.(1)求实数a的值;(2)若不等式在有解,求实数m取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据题意,建立水费与用水量的函数关系式,即可求解.【详解】设小明家去年整年用水量为x,水费为y.若时,则;若时,则;若时,则.令,解得:故选:D2、C【解析】利用函数的奇偶性和单调性将不等式等价为,进而可求得结果.详解】依题意,不等式,又在上是增函数,所以,即或,解得或.故选:C.3、D【解析】依次判断4个选项的单调性及奇偶性即可.【详解】对于A,在区间上单调递增,错误;对于B,,由得,单调递增,错误;对于C,当时,没有意义,错误;对于D,为偶函数,且在时,单调递减,正确.故选:D.4、C【解析】由求出的值,再由诱导公式可求出答案【详解】因为,所以,所以,故选:C5、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线的倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C6、D【解析】根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.7、A【解析】根据三角函数图象的变换求解即可【详解】由题意,把函数的图象向左平行移动个单位长度得到故选:A8、C【解析】,,即①,同理可得②,①+②得,故选C考点:1.平面向量共线充要条件;2.向量的数量积运算9、A【解析】设C的坐标,由重心坐标公式求重心,代入欧拉线得方程,求出AB的垂直平分线,联立欧拉线方程得三角形外心,外心到三角形两顶点距离相等可得另一方程,两方程联立求得C点的坐标.【详解】设C(m,n),由重心坐标公式得重心为,代入欧拉线方程得:①AB的中点为,,所以AB的中垂线方程为联立,解得所以三角形ABC的外心为,则,化简得:②联立①②得:或,当时,BC重合,舍去,所以顶点C的坐标是故选A.【点睛】本题主要考查了直线方程的各种形式,重心坐标公式,属于中档题.10、A【解析】本道题目先理解的意义,实则为一个半圆,然后利用图像,绘制出该直线与该圆有交点的大致位置,计算出b的范围,即可.【详解】要使得这两条曲线有交点,则使得直线介于1与2之间,已知1与圆相切,2过点(1,0),则b分别为,故,故选A.【点睛】本道题目考查了圆与直线的位置关系,做此类题可以结合图像,得出b的范围.二、填空题:本大题共6小题,每小题5分,共30分。11、4050【解析】设每辆车的月租金定为元,则租赁公司的月收益:当时,最大,最大值为,即当每车辆的月租金定为元时,租赁公司的月收益最大,最大月收益是,故答案为.【思路点睛】本题主要考查阅读能力、数学建模能力和化归思想以及几何概型概率公式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.解答本题的关键是:将租赁公司的月收益表示为关于每辆车的月租金的函数,然后利用二次函数的性质解答.12、【解析】根据得到,再取时,,根据函数奇偶性得到表达式.【详解】是定义在R上的奇函数,则,故,时,,则.故答案为:.13、【解析】由图可知,,得,从而,所以,然后将代入,得,又,得,因此,,注意最后确定的值时,一定要代入,而不是,否则会产生增根.考点:三角函数的图象与性质.14、【解析】利用正弦、余弦、正切之间的商关系,分式的分子、分母同时除以即可求出分式的值.【详解】【点睛】本题考查了同角三角函数的平方和关系和商关系,考查了数学运算能力.15、【解析】设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离【详解】设该点的坐标是(x,y,z),∵该点到三个坐标轴的距离都是1,∴x2+y2=1,x2+z2=1,y2+z2=1,∴x2+y2+z2,∴该点到原点的距离是故答案为【点睛】本题考查了空间中点的坐标与应用问题,是基础题16、2【解析】根据函数为幂函数求参数m,讨论所求得的m判断函数是否在上是减函数,即可确定m值.【详解】由题设,,即,解得或,当时,,此时函数在上递增,不合题意;当时,,此时函数在上递减,符合题设.综上,.故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用三角恒等变换公式将化到最简形式,确定,在这个范围内解三角不等式即可;(2)确定在上的最值,根据有两个不同的实数根,得到a应满足的条件,解得答案.【小问1详解】原式化简后得,由,则∴,可得,即,故不等式的解集为【小问2详解】在上的单调递增区间为,单调递减区间为,当时,,,当时,,,当时,,,又有两个不同的实数根,则,∴,故a的取值范围为18、(1)在上单调递增,在上单调递减;(2).【解析】(1)本题可根据正弦函数单调性得出结果;(2)可令,通过计算得出或,然后根据在上有两个零点即可得出结果.【详解】(1)令,解得,令,解得,故函数在上单调递增,在上单调递减.(2),令,则,,故或,解得或,因为在上有两个零点,所以,解得,故实数的取值范围为.19、(1);⑵8.【解析】(1)设BC边的高所在直线为l,由斜率公式求出KBC,根据垂直关系得到直线l的斜率Kl,用点斜式求出直线l的方程,并化为一般式(2)由点到直线距离公式求出点A(﹣1,4)到BC的距离d,由两点间的距离公式求出|BC|,代入△ABC的面积公式求出面积S的值试题解析:(1)设边上高所在直线为,由于直线的斜率所以直线的斜率.又直线经过点,所以直线的方程为,即⑵边所在直线方程为:,即点到直线的距离,又.20、(1)();(2)【解析】(1)根据函数图象上相邻两个最高点的距离为,则,又的图象关于直线对称,则(),则,,即,令,得,所以函数的单调递增区间为()(2)由,得,∴,由(1)知在上单调递增,∵,∴,得,∴21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冠心病支架患者的护理
- 外科胃肠疾病病人的护理
- 市妇幼保健院DRG改革工作实施方案
- 《呼吸皮囊的使用》课件
- 医疗物品归类
- 《组织协调能力》课件
- 医院助理全科培训工作安排
- 中班数学活动花园迷宫
- 基本医生述职报告
- 公安审计课件
- Office高效办公智慧树知到期末考试答案章节答案2024年西安欧亚学院
- 2024年浙江地方金融监督管理局事业单位笔试真题
- 预防艾滋病梅毒乙肝母婴传播
- 《建设工程施工现场消防安全技术规范》
- HG-T 2006-2022 热固性和热塑性粉末涂料
- DL-T804-2014交流电力系统金属氧化物避雷器使用导则
- 2024养猪场买卖合同协议书范本
- 《5以内的减法》幼儿园数学课件
- 2024年全国初中数学竞赛试题含答案
- 感染科护理小讲课
- 五年级口算1000题(打印版)
评论
0/150
提交评论