近五年高考数学真题分类汇编14篇之12 解析几何试题版_第1页
近五年高考数学真题分类汇编14篇之12 解析几何试题版_第2页
近五年高考数学真题分类汇编14篇之12 解析几何试题版_第3页
近五年高考数学真题分类汇编14篇之12 解析几何试题版_第4页
近五年高考数学真题分类汇编14篇之12 解析几何试题版_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

近五年高考数学真题分类汇编十二、解析几何一、单选题1.(2021·全国(文))点到双曲线的一条渐近线的距离为()A. B. C. D.2.(2021·全国(文))设B是椭圆的上顶点,点P在C上,则的最大值为()A. B. C. D.23.(2021·全国)已知,是椭圆:的两个焦点,点在上,则的最大值为()A.13 B.12 C.9 D.64.(2021·浙江)已知,函数.若成等比数列,则平面上点的轨迹是()A.直线和圆 B.直线和椭圆 C.直线和双曲线 D.直线和抛物线5.(2021·全国(理))已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为()A. B. C. D.6.(2021·全国(理))设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是()A. B. C. D.7.(2020·天津)设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为()A. B. C. D.8.(2020·北京)设抛物线的顶点为,焦点为,准线为.是抛物线上异于的一点,过作于,则线段的垂直平分线().A.经过点 B.经过点C.平行于直线 D.垂直于直线9.(2020·北京)已知半径为1的圆经过点,则其圆心到原点的距离的最小值为().A.4 B.5 C.6 D.710.(2020·浙江)已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数y=图像上的点,则|OP|=()A. B. C. D.11.(2020·全国(文))设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3 C. D.212.(2020·全国(理))若直线l与曲线y=和x2+y2=都相切,则l的方程为()A.y=2x+1 B.y=2x+ C.y=x+1 D.y=x+13.(2020·全国(理))设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1 B.2 C.4 D.814.(2020·全国(文))点(0,﹣1)到直线距离的最大值为()A.1 B. C. D.215.(2020·全国(文))设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A. B. C. D.16.(2020·全国(文))在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为()A.圆 B.椭圆 C.抛物线 D.直线17.(2020·全国(文))已知圆,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1 B.2C.3 D.418.(2020·全国(理))已知⊙M:,直线:,为上的动点,过点作⊙M的切线,切点为,当最小时,直线的方程为()A. B. C. D.19.(2020·全国(理))已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3 C.6 D.920.(2020·全国(理))若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为()A. B. C. D.21.(2020·全国(理))设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为()A.4 B.8 C.16 D.3222.(2019·北京(文))已知双曲线(a>0)的离心率是则a=A. B.4 C.2 D.23.(2019·全国(文))已知是双曲线的一个焦点,点在上,为坐标原点,若,则的面积为A. B. C. D.24.(2019·北京(理))已知直线l的参数方程为(t为参数),则点(1,0)到直线l的距离是A. B. C. D.25.(2019·全国(理))双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若,则△PFO的面积为A. B. C. D.26.(2019·天津(文))已知抛物线的焦点为,准线为.若与双曲线的两条渐近线分别交于点A和点B,且(为原点),则双曲线的离心率为A. B. C.2 D.27.(2019·全国(文))设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.28.(2019·全国(文))已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A. B. C. D.29.(2019·全国(文))双曲线C:的一条渐近线的倾斜角为130°,则C的离心率为A.2sin40° B.2cos40° C. D.30.(2019·上海)以为圆心的两圆均过,与轴正半轴分别交于,且满足,则点的轨迹是A.直线 B.圆 C.椭圆 D.双曲线31.(2018·北京(理))在平面直角坐标系中,记为点到直线的距离,当、变化时,的最大值为A. B.C. D.32.(2018·全国(理))设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B. C. D.33.(2018·全国(理))直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.34.(2018·全国(文))已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D.35.(2018·全国(理))已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.36.(2017·全国(理))已知双曲线的一条渐近线方程为,且与椭圆有公共焦点.则C的方程为()A. B.C. D.37.(2017·全国(文))过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为()A. B. C. D.二、多选题38.(2021·全国)在正三棱柱中,,点满足,其中,,则()A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点,使得D.当时,有且仅有一个点,使得平面39.(2021·全国)已知点在圆上,点、,则()A.点到直线的距离小于B.点到直线的距离大于C.当最小时,D.当最大时,40.(2020·海南)已知曲线.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为C.若mn<0,则C是双曲线,其渐近线方程为D.若m=0,n>0,则C是两条直线未命名未命名三、填空题41.(2021·全国)已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为______.42.(2021·全国(文))已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.43.(2021·全国(理))已知双曲线的一条渐近线为,则C的焦距为_________.44.(2021·全国(文))双曲线的右焦点到直线的距离为________.45.(2020·天津)已知直线和圆相交于两点.若,则的值为_________.46.(2020·江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0)的一条渐近线方程为y=x,则该双曲线的离心率是____.47.(2020·全国(理))已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为______________.48.(2019·江苏)在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是_____.49.(2019·北京(文))设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为__________.50.(2019·全国(理))设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为___________.51.(2019·浙江)已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_______.52.(2019·全国(理))已知双曲线C:的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,,则C的离心率为____________.53.(2018·上海)已知实数、、、满足:,,,则的最大值为______.54.(2018·江苏)在平面直角坐标系中,为直线上在第一象限内的点,,以为直径的圆与直线交于另一点.若,则点的横坐标为________.55.(2018·江苏)在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.56.(2018·北京(文))已知直线l过点(1,0)且垂直于𝑥轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.57.(2018·全国(理))已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.58.(2018·浙江)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.四、解答题59.(2021·全国(文))已知抛物线的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.60.(2021·全国(文))抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:交C于P,Q两点,且.已知点,且与l相切.(1)求C,的方程;(2)设是C上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.61.(2021·浙江)如图,已知F是抛物线的焦点,M是抛物线的准线与x轴的交点,且,(1)求抛物线的方程;(2)设过点F的直线交抛物线与A、B两点,斜率为2的直线l与直线,x轴依次交于点P,Q,R,N,且,求直线l在x轴上截距的范围.62.(2021·全国(理))在直角坐标系中,的圆心为,半径为1.(1)写出的一个参数方程;(2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.63.(2021·全国(理))已知抛物线的焦点为,且与圆上点的距离的最小值为.(1)求;(2)若点在上,是的两条切线,是切点,求面积的最大值.64.(2021·全国)在平面直角坐标系中,已知点、,点的轨迹为.(1)求的方程;(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.65.(2020·海南)已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为,(1)求C的方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.66.(2020·天津)已知椭圆的一个顶点为,右焦点为,且,其中为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点.求直线的方程.67.(2020·北京)已知椭圆过点,且.(Ⅰ)求椭圆C的方程:(Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.68.(2020·山东)已知椭圆C:的离心率为,且过点.(1)求的方程:(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.69.(2020·江苏)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.70.(2020·全国(理))已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.71.(2020·全国(文))已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.72.(2019·江苏)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.73.(2019·江苏)如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.74.(2019·北京(理))已知抛物线C:x2=−2py经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.75.(2019·全国(文))已知点A,B关于坐标原点O对称,│AB│=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径.(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.76.(2019·上海)已知抛物线方程为焦点,为抛物线准线上一点,为线段与抛物线的交点,定义:.(1)当时,求;(2)证明:存在常数,使得;(3)为抛物线准线上三点,且,判断与的关系.77.(2018·上海)设常数.在平面直角坐标系中,已知点,直线:,曲线:.与轴交于点、与交于点.、分别是曲线与线段上的动点.(1)用表示点到点距离;(2)设,,线段的中点在直线,求的面积;(3)设,是否存在以、为邻边的矩形,使得点在上?若存在,求点的坐标;若不存在,说明理由.78.(2018·北京(文))已知椭圆的离心率为,焦距为.斜率为的直线与椭圆有两个不同的交点、.(Ⅰ)求椭圆的方程;(Ⅱ)若,求的最大值;(Ⅲ)设,直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.若、和点共线,求.79.(2018·江苏)如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.80.(2018·北京(理))已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,,,求证:为定值.81.(2018·全国(文))在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.82.(2018·全国(理))已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.83.(2018·全国(文))已知斜率为的直线与椭圆交于,两点.线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:.84.(2018·全国(理))在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.85.(2018·浙江

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论