2024年广西南宁市“4+N”高中联合体数学高三上期末质量跟踪监视模拟试题含解析_第1页
2024年广西南宁市“4+N”高中联合体数学高三上期末质量跟踪监视模拟试题含解析_第2页
2024年广西南宁市“4+N”高中联合体数学高三上期末质量跟踪监视模拟试题含解析_第3页
2024年广西南宁市“4+N”高中联合体数学高三上期末质量跟踪监视模拟试题含解析_第4页
2024年广西南宁市“4+N”高中联合体数学高三上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年广西南宁市“4+N”高中联合体数学高三上期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.射线测厚技术原理公式为,其中分别为射线穿过被测物前后的强度,是自然对数的底数,为被测物厚度,为被测物的密度,是被测物对射线的吸收系数.工业上通常用镅241()低能射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为()(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,,结果精确到0.001)A.0.110 B.0.112 C. D.2.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A. B. C. D.3.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条()A.36 B.21 C.12 D.64.设等差数列的前n项和为,且,,则()A.9 B.12 C. D.5.运行如图所示的程序框图,若输出的的值为99,则判断框中可以填()A. B. C. D.6.如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点()A.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变B.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变D.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变7.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是().A.与2016年相比,2019年不上线的人数有所增加B.与2016年相比,2019年一本达线人数减少C.与2016年相比,2019年二本达线人数增加了0.3倍D.2016年与2019年艺体达线人数相同8.已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,,则的渐近线方程为()A. B. C. D.9.已知集合,若,则实数的取值范围为()A. B. C. D.10.已知集合,则()A. B. C. D.11.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()A.3 B.4 C.5 D.612.已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则_________.14.如图是一个算法的伪代码,运行后输出的值为___________.15.已知向量与的夹角为,||=||=1,且⊥(λ),则实数_____.16.已知点是直线上的一点,将直线绕点逆时针方向旋转角,所得直线方程是,若将它继续旋转角,所得直线方程是,则直线的方程是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在平面四边形中,的面积为.(1)求的长;(2)已知,为锐角,求.18.(12分)已知分别是椭圆的左、右焦点,直线与交于两点,,且.(1)求的方程;(2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值.19.(12分)在,角、、所对的边分别为、、,已知.(1)求的值;(2)若,边上的中线,求的面积.20.(12分)已知抛物线上一点到焦点的距离为2,(1)求的值与抛物线的方程;(2)抛物线上第一象限内的动点在点右侧,抛物线上第四象限内的动点,满足,求直线的斜率范围.21.(12分)某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.每台设备一个月中使用的易耗品的件数678型号A30300频数型号B203010型号C04515将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?22.(10分)已知首项为2的数列满足.(1)证明:数列是等差数列.(2)令,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据题意知,,代入公式,求出即可.【详解】由题意可得,因为,所以,即.所以这种射线的吸收系数为.故选:C【点睛】本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题.2、B【解析】

利用换元法化简解析式为二次函数的形式,根据二次函数的性质求得的取值范围,由此求得的值域.【详解】因为(),所以,令(),则(),函数的对称轴方程为,所以,,所以,所以的值域为.故选:B【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.3、B【解析】

先找到与平面平行的平面,利用面面平行的定义即可得到.【详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.4、A【解析】

由,可得以及,而,代入即可得到答案.【详解】设公差为d,则解得,所以.故选:A.【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.5、C【解析】

模拟执行程序框图,即可容易求得结果.【详解】运行该程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此时要输出的值为99.此时.故选:C.【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.6、A【解析】

由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论.【详解】由图可知,,又,,又,,,为了得到这个函数的图象,只需将的图象上的所有向左平移个长度单位,得到的图象,再将的图象上各点的横坐标变为原来的(纵坐标不变)即可.故选:A【点睛】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.7、A【解析】

设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详解】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.8、D【解析】

根据为等腰三角形,可求出点P的坐标,又由的斜率为可得出关系,即可求出渐近线斜率得解.【详解】如图,因为为等腰三角形,,所以,,,又,,解得,所以双曲线的渐近线方程为,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于中档题.9、A【解析】

解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.10、A【解析】

考虑既属于又属于的集合,即得.【详解】.故选:【点睛】本题考查集合的交运算,属于基础题.11、B【解析】

通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“∧”“∨”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次数为4次.故选:B.【点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.12、B【解析】

设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,,当时,,当且仅当时取等号,此时,,点在以为焦点的椭圆上,,由椭圆的定义得,所以椭圆的离心率,故选B.【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

因为,所以.因为,所以,又,所以,所以..14、13【解析】根据题意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不满足条件,故得到此时输出的b值为13.故答案为13.15、1【解析】

根据条件即可得出,由即可得出,进行数量积的运算即可求出λ.【详解】∵向量与的夹角为,||=||=1,且;∴;∴λ=1.故答案为:1.【点睛】考查向量数量积的运算及计算公式,以及向量垂直的充要条件.16、【解析】

求出点坐标,由于直线与直线垂直,得出直线的斜率为,再由点斜式写出直线的方程.【详解】由于直线可看成直线先绕点逆时针方向旋转角,再继续旋转角得到,则直线与直线垂直,即直线的斜率为所以直线的方程为,即故答案为:【点睛】本题主要考查了求直线的方程,涉及了求直线的交点以及直线与直线的位置关系,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)4.【解析】

(1)利用三角形的面积公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,进而求得,利用同角三角函数的基本关系式求得.【详解】(1)在中,由面积公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,为锐角.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形面积公式,考查同角三角函数的基本关系式,属于中档题.18、(1)(2)【解析】

(1)不妨设,,计算得到,根据面积得到,计算得到答案.(2)设,,,联立方程利用韦达定理得到,,代入化简计算得到答案.【详解】(1)由题意不妨设,,则,.∵,∴,∴.又,∴,∴,,故的方程为.(2)设,,,则.∵,∴,设直线的方程为,联立整理得.∵在上,∴,∴上式可化为.∴,,,∴,,∴.∴.【点睛】本题考查了椭圆方程,定值问题,意在考查学生的计算能力和综合应用能力.19、(1)(2)答案不唯一,见解析【解析】

(1)由题意根据和差角的三角函数公式可得,再根据同角三角函数基本关系可得的值;(2)在中,由余弦定理可得,解方程分别由三角形面积公式可得答案.【详解】解:(1)在中,因为,又已知,所以,因为,所以,于是.所以.(2)在中,由余弦定理得,得解得或,当时,的面积,当时,的面积.【点睛】本题考查正余弦定理理解三角形,涉及三角形的面积公式和分类讨论思想,属于中档题.20、(1)1;(2)【解析】

(1)根据点到焦点的距离为2,利用抛物线的定义得,再根据点在抛物线上有,列方程组求解,(2)设,根据,再由,求得,当,即时,直线斜率不存在;当时,,令,利用导数求解,【详解】(1)因为点到焦点的距离为2,即点到准线的距离为2,得,又,解得,所以抛物线方程为(2)设,由由,则当,即时,直线斜率不存在;当时,令,所以在上分别递减则【点睛】本题主要考查抛物线定义及方程的应用,还考查了分类讨论的思想和运算求解的能力,属于中档题,21、(1)(2)应该购买21件易耗品【解析】

(1)由统计表中数据可得型号分别为在一个月使用易耗品的件数为6,7,8时的概率,设该单位三台设备一个月中使用易耗品的件数总数为X,则,利用独立事件概率公式进而求解即可;(2)由题可得X所有可能的取值为,即可求得对应的概率,再分别讨论该单位在购买设备时应同时购买20件易耗品和21件易耗

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论