微积分i2004上册课件_第1页
微积分i2004上册课件_第2页
微积分i2004上册课件_第3页
微积分i2004上册课件_第4页
微积分i2004上册课件_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第6次课§1.5

极限存在准则两个重要极限简明扼要复习上一次课内容(3分钟左右)§1.5

极限存在准则两个重要极限一、极限存在准则1.夹逼准则(1)如果"

x

˛

N

(xˆ0

,d0

)(或

x

>

M

),有g

(x

£

f

(x

£

h(x

,(2

lim

g

(xxfi

x0

xfi

x0(xfi

¥

)

(xfi

¥

)=

A,

lim

h(x

=

A,xfi

x0(xfi

¥

)那么

lim

f

(x

存在,

且等于A.分析(1

g

(x

£

f

(x

£

h(x

,

(2lim

g

(xxfi

x0xfi

x0=

A, lim

h(x

=

A,xfi

x0

lim

f

(x

=

A.xfi

x0lim

g

(x

=

A

xfi

x0\

"

e

>

0,

$d

>

0,"

x

˛

N

(

x0

,d

),

A

-e

<

g(

x)

<

A

+e.lim

h(x

=

A

\

"

e

>

0,

$d

>

0,"

x

˛

N

(

x0

,d

),

A

-

e

<

h(

x)

<

A

+e."

x

˛

N

(

x0

,d0

),

g

(x

£

f

(x

£

h(x

,\

"

e

>

0,

$d

>

0,"

x

˛

N

(

x0

,d

),

A

-e

<

f

(

x)

<

A

+

e.证xfi

x0

xfi

x0

lim

g

(x

=

A, lim

h(x

=

A.\

"

e

>

0,

$d1

>

0,

当0

<

x

-

x0

<

d1时,

g

(x

)-

A

<

e;

A

-

e

<

g

(x

)<

A

+

e$d2

>

0,

当0

<

x

-

x0

<

d2时,

h(x

)-

A

<

e;

A

-

e

<

h(x<

A

+

e

0

<

x

-

x0<

d0,有g

(x

<

f

(x

<

h(x\

取d

=

min{d1

,

d2

,

d0

},

当0

<

x

-

x0

<

d时,xfi

x0

f

(x

)-

A

<

e

lim

f

(x有

A

-

e

<

g

(x

<

f

(x

<

h(x

<

A

+

e=

A(1

yn

£

xn

£

zn

(n

=

1,

2,),(2 lim

yn

=

lim

zn

=

A,nfi

¥

nfi

¥

lim

xn

=

A.nfi

¥例1111).+n2

+

1n2

+

2+

+求lim(nfi

¥解11n2

+

1n2

+

n+

+nn2

+

n又limnfi

¥=

1,nlimnfi

¥n2

+

1=

1,由夹逼定理得111lim(nfi

¥+)

=

1.n2

+

1n2

+

2n2

+

n+

+,n2

+

nn<n2

+

1n<n2

+

n11=limnfi

¥1

+

n11=

limnfi

¥1

+

n2例2求lim

n

1

+2n

+3n

.nfi

¥n

3

£

n

1

+

2n

+

3n

£

n

3

·

3n=

3n

3解:

n

3n

£

n

1

+

2n

+

3n

£

n

3

·3n3

=

n

3n

£

n

1

+

2n

+

3n

£

n

3

·3n

=

3n

3lim 3

n

3

=

3nfi

¥\

lim

n

1

+

2n

+

3n

=

3.nfi

¥例3

证明:

limcos

x

=

1xfi

02解:

0

£

1

-

cos

x

=

2sin2

x

<2x

2且limx

fi

0xfi

0\

lim(1

-

cos

x

=

0

limcos

x

=

1xfi

0x2

x

2=2<

2

2

=

0sin

x

£

x2.

重要极限一(1)sin

xxlimxfi

0=

12设单位圆O,

圆心角—

AOB

=

x,

(0

<

x

<

p

)于是有sin

x

=

BD,

x

=

弧AB,

tan

x

=

AC

,过A点作单位圆的切线,得DACO.扇形OAB的圆心角为x,D

OAB的高为BD

,记住此公式x

cos

x

<

sin

x

<

1,2上式对于-p

<x

<0也成立.即当0

<

x

<

p

时,

有cos

x

<

sin

x

<

1;2

x

limcos

x

=

1,xfi

0lim1

=

1,xfi

0xxfi

0\

lim

sin

x

=

1.x

1sin

x

cos

x

1

<<

BD

<弧AB

<AC\

sin

x

<

x

<

tan

xxx

fi

0例4

(1)求lim

tan

x

.x

x

cos

xxfi

0xfi

0lim

tan

x

=

lim

sin

x

1解1limx

fi

0x

x

fi

0

cos

x=

lim

sin

x=

1.xx

fi

0(2)求lim

arcsin

x

.解

令t

=

arcsin

x,

x=sint,ttfi

0

sin

t=

1.原式=lim例5x2xfi

0求lim

1

-cos

x

.解2sin2

xx2原式=limxfi

0sin

2122xlimx

fi

02

=

x

2

2

1x

2

sin

2

=lim

2

x

fi

0

x

2

1212=12=

.x

3xfi

0例6求lim

tan

x

-sin

x

.3x解limx

fi

0xx

2x

fi

0x

fi

0lim

1

-

cos

x=

lim

tan

xx

2x

fi

0=

12lim

1

-

cosx

=

1

.前例6xx

2tan

x

-

sinx

=lim

tan

x1

-

cos

x

x

fi

0

x2sin

1sin

xxfi

0例7

求lim

x

.x2

sin

1xx

sin

1xxfi

0sin

x

xfi

0

sin

x解

lim

x

=

limxlim

x

sin

1xxfi

0

sin

xxfi

0=

lim=

0.xfi

x0sin

(x

-

x0x

-

x0例8 求

lim

.f

(x

)uxfi

x0ufi

0sin

f

(x

sin

ulim

=

lim

=

1.f

(x

)xfi

x0

lim

sin

f

(x=

1.一般地:lim

f

(

x)

=

0xfi

x0令u

=

f

(

x

),

x

fi

x0

u

fi

0,

故xfi

x0ufi

0解

令u

=

x

-

x0

,

当x

fi

x0时,

u

fi

0,故lim

sin

(x

-

x0

=

lim

sin

u

=

1.x

-

x0

ux

fi

0

sin

nx(m

、n

„0

).例9求lim

sin

mxsin

nxx

fi

0

sin

nx

mx

nxx

fi

0lim

sin

mx

=

lim

sin

mx

mx

nx解lim

mx

limnxmxx

fi

0x

fi

0nx

x

fi

0

sin

nx=

lim

sin

mxn=

1

m

1n=

m

.解 令

t

=

p

-

x

x

=

p

-

t

,x

fi

p

tan

5

xt

fi

0t

fi

0lim

sin

3

x

=

lim

sin

(3p

-

3

tsin

(p

-

3

t=

limtan

(5p

-

5

t

)tan

(p

-

5

t

)tan

5

tt

fi

0=

-

lim

sin

3

ttan

5

xx

fi

p例10求

lim

sin

3

x

.35sin

3ttan

5t5tt

fi

0=

-

lim

3t

5=

-

3

.tan

5

x

3

x5

x

tan

5

x

5x

fi

p

t

fi

0,x

fi

px

fi

plim

sin

3

x

=

lim

sin

3

x3

x

5

x

=

3x

fi

p3

1

+

x

2

-

1例10求lim

1

-

cos

2

x

.2x2xfi

0lim

1

-

cos

x

=

1xlimxfi

0n

1

+

x

-1

1=n322(2x)2xx21

-

cos

2x

4

x21

+

x

-

1解原式=limxfi

012

3=

1

4

=

6..xfi

1

cos

p

x1

-

x2例11

求lim2解

令1

-

x

=

u,

x

=

1

-

u;

当x

fi

1时,

u

fi

0,sin

u2pufi

0=

2lim

2

p2usin

p

u=

2

limufi

04=

.p2xfi

12p

u

2原式=

lim

(1

+

x)(1

-

x)

ucos

p

x

ufi

0

cos

p

(1

-

u)=2

lim单调增加有上界2.单调有界准则如果数列{xn

}满足条件

x1

£

x2£

xn

£

xn+1

£,x1

‡x2‡xn

‡xn+1

‡,单调减少有上界有上界,即$M

,"n,有xn

£

M有下界,即$m,"n,有xn

‡m准则Ⅱ

单调有界数列必有极限.nfi

¥证10证明有下界证明:lim

xn存在并求此极限值.a

xn2xn

2a

-

xn

=

-2

xn

又因

xn+1

-

xn

=

xn

+axn

2

n-1

n-1

x

=

1

x

+所以数列{xn

}有下界a

.2a

2

+

b2

2ab

a

+

b

ab()1

ax

+2

n

x

n

n

=1,

2,

3,,

a

>

0例12

x1

>

0,

且xn+1

=a

-

x2所以

xn+1

£

xn

,

数列{xn

}单调减少.xn-1n-1

a‡

x

=

a

,1n由已知x

>

0及递推公式知x

>

0,20

证明有单调减1

=

n

£0

.2

xnnfi

¥令lim

xn

=

A,

A

=

1

A

+

a

,2

A

nfi

¥故根据单调有界准则lim

xn存在.2naxnfi

¥

nfi

¥

n-1n-1

lim

x

=

lim

1

x

+

A

=

a

,nfi

¥所以

lim

xn

=

a

.axn

2

n-1n-1

对等式

x

=

1

x

+两边取极限因xn

>0,nfi

¥故lim

xn

=

A

0.

A2

=

a例4

证明数列{xn

}:x1

=

3,

x2

=

3

+

3

,

x3

=nfi

¥极限lim

xn存在,并求此极限.解10

由数学归纳法证明数列的单调性.x1

=

3

<

3

+

3

=

x2

,假设xn-1

<

xn

,

由数列的递推关系式得xn

=

3

+

xn-1

<

3

+

xn

=

xn+1

,故数列{xn

}单调增加.

xn

<

xn

+1

,3

+

3

+

3

,,xn

=

3

+

xn-1xn

>

3,20证明数列有上界.nnxnnfi

¥由10

、20知lim

x

存在.nn

x2

<

3

+

xn

{x

}有上界.nxn

=

3

+

xn-1

<

3

+

x3n

x

<

3

+1

<

3

+1

=

3

+1(

x

>

3

)nfi

¥令lim

xn

=

A,nfi

¥

nfi

¥

lim

xn

=

lim 3

+

xn-1

A

=

3

+

A

A2

-

A

-

3

=

0

A

=

1

13

,2nfi

¥因为

xn

>

0,

且lim

xn存在,nfi

¥则lim

xn

=

A

0,2n=

A

=

1

+

13

.所以

lim

xnfi

¥2nlim

xnfi

¥=

A

=

-1

+

5

.问:此种解法是否正确?为什么?nfi

¥解 由所给数列知一般项存在如下递推关系例5

设x1

=

1,

x2

=

1

-

1

,

x3

=

1

-

1

-

1

,求lim

xn

.xn

=

1

-

xn-1

,令

lim

xn

=

A

lim

xn

=

lim 1

-

xn-1nfi

¥

nfi

¥

nfi

¥2

A

=

-1

5

A

=

1-

A

A2

+

A

-1

=

0nfi

¥事实上,所给数列为:x1

=

1,

x2

=

0,

x3

=

1,

x4

=

0,.显然,limxn不存在.不正确注:通过递推公式两边取极限来求数列极限,必须要求数列的极限存在,否则其作法

是错误的.x1

=

1,

x2

=

1

-

1

,

x3

=

1

-1

-

1

,1x(2) lim(1

+xfi

¥)x

=

e1nnn1!

n

2!

n!n2

nnn

1

n(n-x

=(1+

)

=1++1) 1

++

n(n-1)(n-2)(n-n+1)

1=

1

+1

+

1

(1

-

1

)

++

1

(1

-

1

)(1

-

2)(1

-

n

-1).2!

n

n!

n

n

n1

n=

enfi

¥

n

首先证明:lim

1

+1n+1n+1x

=

1

+=

1

+

1

+

1

(1

-

1

)

+2!

n

+

11n

+

112

n

-

1+(1

-)(1

-n

+

1n

+

1)(1

-

)n!

n

+

1112)n+(1

-)(1

-(n

+

1)!

n

+

1n

+

1n

+

1)(1

->

xn

,

xn+1n\{x

}是增的;<

1

+

1

+

1

+

+

12!

n!122n-1<

1

+

1

+

1

+

+2

1

n1-

2

=1+

1-

1<3,\{xn

}是有界的;nfi

¥\limxn存在.nnfi

¥记为

lim(1

+

1

)n

=

e(e

=

2.718281828459045)n2!

n

n!

n

n

nx

=

1

+

1

+

1

(1

-

1

)

++

1

(1

-

1

)(1

-

2

)(1

-

n

-

1).

1

n-1=

3

-

2

"

x

>

1

,$n,

使n

£

x

<n

+1,n

nnnfi

¥nfi

¥nfi

¥lim(1

+

1

)而

lim(1

+

1

)n+1

=

lim(1

+

1

)n1

11)n+1nfi

¥nfi

¥lim(1

+nfi

¥)n

=

lim(1

+lim(1

+)-1

=

e,n

+

1

n

+

1n

+

1xxfi

+¥\

lim

(1

+

1

)x

=

e.由夹逼定理得1

x=

elim

1

+xfi

x

(1

+

1

<

1

£

1

n

+1

x

n11

+

1

<

1

+

1

£

1

+

1

n

+1

x

n1)n

<

(1

+

1

)n

(1

+)n

<

(1

+

1

)n

£

(1

+

1

)xx

xx n

+1n

+11n=

e,(1

+)n

<

(1

+

1

)n

£

(1

+

1

)x

£

(1

+

1

)x

£

(1

+

1

)n+1n

+1

x

x

n令t

=-x,x

txfi

-¥t

fi

+¥\

lim

(1

+

1

)x

=

lim

(1

-

1)-t1)

t=

lim

(1

+t

fi

+¥t

-

111=

lim

(1

+t

fi

+¥)t

-1

(1

+t

-

1t

-

1)

=

e.xxfi

¥\

lim(1

+

1

)x

=

e,1t令x

=1lim(1

+

x)

xxfi

01lim(1

+

x)

x

=

exfi01xxlim(1

+

)xfi

¥=

exxfi

-¥lim

(1

+

1

)x

,)

=

e.t1t=

lim(1

+t

fi

¥)

tt=

lim

(t

fi

+¥t

-

1例14xx

fi

¥求lim(1

-1

)x

.解1]-

x

-1-x原式

=

lim[(1

+

)xfi

¥.1e=

e-1

=例15xfi

¥2

+

x(1)求lim(3

+x

)2

x

.1)-4=

lim[(1

+xfi

¥)x+2

]2

(1

+x

+

2x

+

22=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论