




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省习水县一中2024年高二上数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点和短轴一端点分别向内层椭圆引切线,(如图),且两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.2.若双曲线的离心率为,则其渐近线方程为A.y=±2x B.y=C. D.3.已知函数,在上随机任取一个数,则的概率为()A. B.C. D.4.甲乙两名运动员在某项体能测试中的6次成绩统计如表:甲9816151514乙7813151722分别表示甲乙两名运动员这项测试成绩的平均数,分别表示甲乙两名运动员这项测试成绩的标准差,则有()A., B.,C., D.,5.已知椭圆的左、右焦点分别为,,点P是椭圆上一点且的最大值为,则椭圆离心率为()A. B.C. D.6.已知命题p:∀x>2,x2>2x,命题q:∃x0∈R,ln(x02+1)<0,则下列命题是真命题的是()A.p∧ B.p∨C.p∧q D.p∨q7.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A.3 B.6C.8 D.128.已知等差数列{an}的前n项和为Sn,且S7=28,则a4=()A.4 B.7C.8 D.149.设,则曲线在点处的切线的倾斜角是()A. B.C. D.10.函数的导函数为()A. B.C. D.11.已知双曲线渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.412.过抛物线C:y2=4x的焦点F分别作斜率为k1、k2的直线l1、l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,若|k1·k2|=2,则|AB|+|DE|的最小值为()A.10 B.12C.14 D.16二、填空题:本题共4小题,每小题5分,共20分。13.设、为正数,若,则的最小值是______,此时______.14.如图,椭圆的中心在坐标原点,是椭圆的左焦点,分别是椭圆的右顶点和上顶点,当时,此类椭圆称为“黄金椭圆”,则“黄金椭圆”的离心率___________.15.设a为实数,若直线与直线平行,则a值为______.16.机动车驾驶考试是为了获得机动车驾驶证的考试,采用全国统一的考试科目内容及合格标准,包括科目一理论考试、科目二场地驾驶技能考试、科目三道路驾驶技能考试和科目四安全文明常识考试共四项考试,考生应依次参加四项考试,前一项考试合格后才能报名参加后一项考试,考试不合格则需另行交费预约再次补考.据公安部门通报,佛山市四项考试的合格率依次为,,,,且各项考试是否通过互不影响,则一位佛山公民通过驾考四项考试至多需要补考一次的概率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,直线过且与交于两点,过点作直线的平行线交于点(1)求证:为定值,并求点的轨迹的方程;(2)设动直线与相切于点,且与直线交于点,在轴上是否存在定点,使得以为直径的圆恒过定点?若存在,求出的坐标;若不存在,说明理由18.(12分)已知直线与抛物线交于两点(1)若,直线过抛物线的焦点,线段中点的纵坐标为2,求的长;(2)若交于,求的值19.(12分)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,交直线于点,且,.求证:为定值,并计算出该定值.20.(12分)已知椭圆的左顶点、上顶点和右焦点分别为,且的面积为,椭圆上的动点到的最小距离是(1)求椭圆的方程;(2)过椭圆的左顶点作两条互相垂直的直线交椭圆于不同的两点(异于点).①证明:动直线恒过轴上一定点;②设线段中点为,坐标原点为,求的面积的最大值.21.(12分)已知等差数列满足:,,数列的前n项和为(1)求及;(2)设是首项为1,公比为3的等比数列,求数列的前项和22.(10分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求;(2)若,求的面积的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分别设内外层椭圆方程为、,进而设切线、分别为、,联立方程组整理并结合求、关于a、b、m的关系式,再结合已知得到a、b的齐次方程求离心率即可.【题目详解】若内层椭圆方程为,由离心率相同,可设外层椭圆方程为,∴,设切线为,切线为,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故选:B.【题目点拨】关键点点睛:根据内外椭圆的离心率相同设椭圆方程,并写出切线方程,联立方程结合及已知条件,得到椭圆参数的齐次方程求离心率.2、B【解题分析】双曲线的离心率为,渐进性方程为,计算得,故渐进性方程为.【考点定位】本小题考查了离心率和渐近线等双曲线的性质.3、A【解题分析】先解不等式,然后由区间长度比可得.【题目详解】解不等式,得,所以,即的概率为.故选:A4、B【解题分析】根据给定统计表计算、,再比较、大小判断作答.【题目详解】依题意,,,,,所以,.故选:B5、A【解题分析】根据椭圆的定义可得,从而得到,则,其中,再根据对勾函数的性质求出,即可得到方程,从求出椭圆的离心率;【题目详解】解:依题意,所以,又,所以,因为在上单调递减,所以当时函数取得最大值,即,即所以,即,所以,解得或(舍去)故选:A6、B【解题分析】取x=4,得出命题p是假命题,由对数的运算得出命题q是假命题,再判断选项.【题目详解】命题p:∀x>2,x2>2x,是假命题,例如取x=4,则42=24;命题q:∃x0∈R,ln(x02+1)<0,是假命题,∵∀x∈R,ln(x2+1)≥0.则下列命题是真命题的是.故选:B.7、B【解题分析】根据椭圆中的关系即可求解.【题目详解】椭圆的长轴长为10,焦距为8,所以,,可得,,所以,可得,所以该椭圆的短轴长,故选:B.8、A【解题分析】由等差数列的性质可知,再代入等差数列的前项和公式求解.【题目详解】数列{an}是等差数列,,那么,所以.故选:A.【题目点拨】本题考查等差数列的性质和前项和,属于基础题型.9、C【解题分析】根据导数的概念可得,再利用导数的几何意义即可求解.【题目详解】因为,所以,则曲线在点处的切线斜率为,故所求切线的倾斜角为.故选:C10、B【解题分析】利用复合函数求导法则即可求导.【题目详解】,故选:B.11、A【解题分析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【题目详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.12、B【解题分析】设出l1的方程为,与抛物线联立后得到两根之和,两根之积,用弦长公式表达出,同理表达出,利用基本不等式求出的最小值.【题目详解】抛物线C:y2=4x的焦点F为,直线l1的方程为,则联立后得到,设,,,则,同理设可得:,因为|k1·k2|=2,所以,当且仅当,即或时,等号成立,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、①.4②.【解题分析】巧用“1”改变目标式子的结果,借助均值不等式求最值即可.【题目详解】,当且仅当即,时等号成立.故答案为,【题目点拨】本题考查最值的求法,注意运用“1”的代换法和基本不等式,考查运算能力,属于中档题14、或【解题分析】写出,,求出,根据以及即可求解,【题目详解】由题意,,,所以,,因为,则,即,即,所以,即,解得或(舍).故答案为:15、【解题分析】根据两直线平行得到,解方程组即可求出结果.【题目详解】由题意可知,解得,故答案为:.16、【解题分析】至多需要补考一次,分5种情况分别计算后再求和即可.【题目详解】不需要补考就通过的概率为;仅补考科目一就通过的概率为;仅补考科目二就通过的概率为;仅补考科目三就通过的概率为;仅补考科目三就通过的概率为,一位佛山公民通过驾考四项考试至多需要补考一次的概率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,()(2)存在,【解题分析】(1)根据题意和椭圆的定义可知点的轨迹是以A,为焦点的椭圆,且,,进而得出椭圆标准方程;(2)设,联立动直线方程和椭圆方程并消元得出关于的一元二次方程,根据根的判别式可得点P和Q的坐标,结合,利用平面向量的坐标表示列出方程组,即可解出点M的坐标.【小问1详解】圆A:,∵,∴,又,∴∴,∴,故∴点的轨迹是以A,为焦点的椭圆,且,∴,故:();【小问2详解】由,得∴,故,设,则,,故,,由可得:由对,恒成立∴故存在使得以为直径的圆恒过定点18、(1)6(2)2【解题分析】(1)通过作辅助线,利用抛物线定义,结合梯形的中位线定理,可求得答案;(2)根据题意可求得直线AB的方程为y=x+4,联立抛物线方程,得到根与系数的关系,由OA⊥OB,得,根据数量积的计算即可得答案.【小问1详解】取AB的中点为E,当p=2时,抛物线为C:x2=4y,焦点F坐标为F(0,1),过A,E,B分别作准线y=-1的垂线,重足分别为I,H,G,在梯形ABGI中(图1),E是AB中点,则2EH=AI+BG,EH=2-(-1)=3,因为AB=AF+BF=AI+BG,所以AB=2EH=6.【小问2详解】设,由OD⊥AB交AB于D(-2,2),(图2),得kOD=-1,kAB=1,则直线AB的方程为y=x+4,由得,所以,由,得,即,即,可得,即,所以p=2.19、(1)(2)证明见解析,定值为【解题分析】(1)由题意得,从而写出椭圆的方程即可;(2)易知直线斜率存在,令,,,,,将直线的方程代入椭圆的方程,消去得到关于的一元二次方程,再结合根系数的关系利用向量的坐标公式即可求得值,从而解决问题.【小问1详解】(1)由条件得,所以方程为【小问2详解】易知直线斜率存在,令,,,由,因为,所以,即-1-x1因为,所以,即-4-x1由①,由②将,代入上式,得20、(1)(2)①证明见解析;②【解题分析】(1)根据题意得,,解方程即可;(2)①设直线:,直线:,联立曲线分别求出点和的坐标,求直线方程判断定点即可;②根据题意得,代入求最值即可.【小问1详解】根据题意得,,,又,三个式子联立解得,,,所以椭圆的方程为:【小问2详解】①证明:设两条直线分别为和,根据题意和得斜率存在且不等于;因为,所以设直线:,直线:;由,解得,所以,同理,.当时,,所以直线的方程为:,整理得,此时直线过定点;当时,直线的方程为:,此时直线过定点,故直线恒过定点.②根据题意得,,,,所以,当且仅当,即时等号成立,故的面积的最大值为:.【题目点拨】解决直线与椭圆综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题21、(1);(2)【解题分析】(1)先根据已知求出,再求及.(2)先根据已知得到,再利用分组求和求数列的前项和.【题目详解】(1)设等差数列的公差为d,因为,,所以,解得,所以;==.(2)由已知得,由(1)知,所以,=.【题目点拨】(1)本题主要考查等差数列的通项和前n项和求法,考查分组求和和等比数列的求和公式,意在考查学生对这些知识的掌握水平和计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司转让股权合同
- 工地设备机械施工合同书
- 2025年宁波从业资格证应用能力考些啥
- 《数据可视化技术应用》2.3剖析用户购买行为数据-教案
- 简单版本的加工承揽合同6篇
- 工作室租房合同7篇
- 《爱心行动-图形与拼组》作业设计方案
- 水力学模拟考试题与参考答案
- 电工岗位试题库及参考答案
- 个人工作计划周工作计划
- 加油站合作协议书
- 福建省厦门市2023届高三二模语文试题(解析版)
- Office办公软件理论知识考核试卷
- 【分解麦当劳在中国地区的组织结构设计及优化策略1500字(论文)】
- 住院患者静脉血栓栓塞症预防护理与管理专家共识解读
- 2024年共青团入团积极分子考试题库及答案
- 2024年江苏农林职业技术学院单招职业适应性测试题库汇编
- 《中国痤疮治疗指南》课件
- 《休闲农业园区管理》课件-第三章 休闲农业的生产管理
- 教育技术学研究方法基础
- 幼儿园大班科学课件:《植物的生长》
评论
0/150
提交评论