广西桂林全州县石塘中学2024年数学高二上期末检测模拟试题含解析_第1页
广西桂林全州县石塘中学2024年数学高二上期末检测模拟试题含解析_第2页
广西桂林全州县石塘中学2024年数学高二上期末检测模拟试题含解析_第3页
广西桂林全州县石塘中学2024年数学高二上期末检测模拟试题含解析_第4页
广西桂林全州县石塘中学2024年数学高二上期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西桂林全州县石塘中学2024年数学高二上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列的公比q为整数,且,,则()A.2 B.3C.-2 D.-32.已知向量与向量垂直,则实数x的值为()A.﹣1 B.1C.﹣6 D.63.设是可导函数,当,则()A.2 B.C. D.4.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A. B.C. D.5.在等差数列{}中,,,则的值为()A.18 B.20C.22 D.246.复数的共轭复数的虚部为()A. B.C. D.7.设等差数列的前n项和为,若,,则()A.60 B.80C.90 D.1008.如图,在四面体中,,,,D为BC的中点,E为AD的中点,则可用向量,,表示为()A. B.C. D.9.若函数在上为单调减函数,则的取值范围()A. B.C. D.10.已知抛物线y2=2px(p>0)的焦点为F,准线为l,M是抛物线上一点,过点M作MN⊥l于N.若△MNF是边长为2的正三角形,则p=()A. B.C.1 D.211.若是函数的极值点,则函数()A.有最小值,无最大值 B.有最大值,无最小值C.有最小值,最大值 D.无最大值,无最小值12.设直线,.若,则的值为()A.或 B.或C. D.二、填空题:本题共4小题,每小题5分,共20分。13.斐波那契数列,又称“兔子数列”,由数学家斐波那契研究兔子繁殖问题时引入.已知斐波那契数列满足,,,若记,,则________.(用,表示)14.若a,b,c都为正数,,且,,成等比数列,则的最大值为____________.15.已知函数,则________16.近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道道亮丽的风景线.他们根据外卖平台提供的信息到外卖店取单,某外卖小哥每天来往于r个外卖店(外卖店的编号分别为1,2,…,r,其中),约定:每天他首先从1号外卖店取单,称为第1次取单,之后,他等可能的前往其余个外卖店中的任何一个店取单,称为第2次取单,依此类推.假设从第2次取单开始,他每次都是从上次取单的店之外的个外卖店取单.设事件表示“第k次取单恰好是从1号店取单()”,是事件发生的概率,显然,,则______,与的关系式为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,椭圆的上顶点到焦点的距离为.(1)求椭圆的方程;(2)若直线与椭圆相交于、两点(、不是左、右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点.18.(12分)如图,在四棱锥中,底面满足,,底面,且,.(1)证明平面;(2)求平面与平面的夹角.19.(12分)已知三棱柱中,面底面,,底面是边长为的等边三角形,,、分别在棱、上,且.(1)求证:底面;(2)在棱上找一点,使得和面所成角的余弦值为,并说明理由.20.(12分)在①,②这两个条件中任选一个,补充在下面的问题中,并作答.设数列的前项和为,且__________.(1)求数列的通项公式;(2)若,求数列的前项和.21.(12分)自疫情爆发以来,由于党和国家对抗疫工作高度重视,在人民群众的不懈努力下,我国抗疫工作取得阶段性成功,国家经济很快得到复苏.在餐饮业恢复营业后,某快餐店统计了近天内每日接待的顾客人数,将前天的数据进行整理得到频率分布表和频率分布直方图.组别分组频数频率第组第组第组第组第组合计(1)求、、的值,并估计该快餐店在前天内每日接待的顾客人数的平均数;(2)已知该快餐店在前50天内每日接待的顾客人数的方差为,在后天内每日接待的顾客人数的平均数为、方差为,估计这家快餐店这天内每日接待的顾客人数的平均数和方差.()22.(10分)设等差数列的前项和为,为各项均为正数的等比数列,且,,再从条件①:;②:;③:这三个条件中选择一个作为已知,解答下列问题:(1)求和的通项公式;(2)设,数列的前项和为,求证:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】由等比数列的性质有,结合已知求出基本量,再由即可得答案.【题目详解】因为,,且q为整数,所以,,即q=2.所以.故选:A2、B【解题分析】根据数量积的坐标计算公式代入可得的值【题目详解】解:向量,与向量垂直,则,由数量积的坐标公式可得:,解得,故选:【题目点拨】本题考查空间向量的坐标运算,以及数量积的坐标公式,属于基础题3、C【解题分析】由导数的定义可得,即可得答案【题目详解】根据题意,,故.故选:C4、A【解题分析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【题目详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A5、B【解题分析】根据等差数列通项公式相关计算求出公差,进而求出首项.【题目详解】设公差为,由题意得:,解得:,所以.故选:B6、B【解题分析】先根据复数除法与加法运算求解得,再求共轭复数及其虚部.【题目详解】解:,所以其共轭复数为,其虚部为故选:B7、D【解题分析】由题设条件求出,从而可求.【题目详解】设公差为,因为,,故,解得,故,故选:D.8、B【解题分析】利用空间向量的基本定理,用,,表示向量【题目详解】因为是的中点,是的中点,,故选:B9、A【解题分析】分析可知对任意的恒成立,利用参变量分离法结合二次函数的基本性质可求得实数的取值范围.【题目详解】因为,则,由题意可知,对任意的恒成立,则,当时,在上单调递减,在上单调递减,所以,,故.故选:A.10、C【解题分析】根据正三角形的性质,结合抛物线的性质进行求解即可.【题目详解】如图所示:准线l与横轴的交点为,由抛物线的性质可知:,因为若△MNF是边长为2的正三角形,所以,,显然,在直角三角形中,,故选:C11、A【解题分析】对求导,根据极值点求参数a,再由导数研究其单调性并判断其最值情况.【题目详解】由题设,且,∴,可得.∴且,当时,递减;当时,递增;∴有极小值,无极大值.综上,有最小值,无最大值.故选:A12、A【解题分析】由两直线垂直可得出关于实数的等式,即可解得实数的值.【题目详解】因为,则,解得或.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由已知两式相加求得,得,得到,从而得到,,利用可得答案.【题目详解】因为,由,,得,所以,得,因为,所以,,所以,,所以,.故答案为:.14、【解题分析】由等比数列性质知,即可得,再利用基本不等式求解即可.【题目详解】由,,成等比数列,得,即又,则,所以,即,即所以,当且仅当时,等号成立,故的最大值为故答案为:15、.【解题分析】将代入计算,利用和互为相反数,作差可得,计算可得结果.【题目详解】解:函数则.,,作差可得:,即,解得:代入此时成立.故答案为:.16、①.②.【解题分析】根据题意,结合条件概率的计算公式,即可求解.【题目详解】根据题意,事件表示“第3次取单恰好是从1号店取单”,因此;同理故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解题分析】(1)根据已知条件求出、、的值,可得出椭圆的标准方程;(2)设、,将直线的方程与椭圆的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出关于、所满足的等式,然后化简直线的方程,即可求得直线所过定点的坐标.【小问1详解】解:椭圆上顶点到焦点距离,又椭圆离心率为,故,,因此,椭圆方程为.【小问2详解】解:设、,由题意可知且,椭圆的右顶点为,则,,因为以为直径的圆过椭圆的右顶点,所以有,则,即,联立,,即,①由韦达定理得,,所以,,化简得,即或,均满足①式.当时,直线,恒过定点,舍去;当时,直线,恒过定点.综上所述,直线过定点.【题目点拨】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点,常利用直线的点斜式方程或截距式来证明.18、(1)证明见解析(2)【解题分析】(1)由已知结合线面平行判定定理可得;(2)建立空间直角坐标系,由向量法可解.【小问1详解】∵,,∴,又平面,平面,∴平面;【小问2详解】∵平面且、平面,∴,,又∵,故分别以所在直线为轴,轴、轴,建立如图空间直角坐标系,如图所示:由,,可得:,,,,,由已知平面,平面,,,,,平面,所以平面,为平面的一个法向量,且;设为平面的一个法向量,则,,,,,,,令,则,,,设平面与平面的夹角大小为,,由得:平面与平面的夹角大小为19、(1)证明见解析;(2)为的中点,理由见解析.【解题分析】(1)取的中点,连接,利用面面垂直的性质定理可得出平面,可得出,再由,结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,设点,利用空间向量法可得出关于实数的方程,求出的值,即可得出结论.【题目详解】(1)取的中点,连接,如图:因为三角形是等边三角形,所以,又因为面底面,平面平面,面,所以平面,又面,所以,又,,平面;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、,在上找一点,其中,,,,设面的一个法向量,则,不妨令,则,和面所成角的余弦值为,则,解得或(舍),所以,为的中点,符合题意.20、(1)答案不唯一,具体见解析(2)答案不唯一,具体见解析【解题分析】(1)若选①:根据,利用数列通项与前n项和的关系求解;若选②:构造利用等比数列的定义求解;(2)根据(1)得到,再利用错位相减法求解.【小问1详解】解:若选①:,当时,,当时,满足上式,故若选②:易得于是数列是以为首项,2为公比的等比数列,【小问2详解】若选①:由(1)得,从而,,作差得,于是若选②由(1)得,从而,,作差得,于是21、(1),,,平均数为;(2)平均数为,方差为.【解题分析】(1)计算出第组的频数,可求得的值,利用频数、频率和总数的关系可求出的值,求出第组的频率,除以组距可得的值,利用平均数公式可求得该快餐店在前天内每日接待的顾客人数的平均数;(2)设前天接待的顾客人数分别为、、、,后天接待的顾客人数分别为、、、,利用平均数公式和方差公式可求得结果.【小问1详解】解:由表可知第组的频数为,所以,,,第组的频率为,,前天内每日接待的顾客人数的平均数为:.【小问2详解】解:设前天接待的顾客人数分别为、、、,后天接待的顾客人数分别为、、、,则由(1)知前天的平均数,方差,后天的平均数,方差,故这天的平均数为,,同理,这天的方差,由以上三式可得.22、(1)an=n,bn=(2)证明见解析【解题分析】(1)设等差数列的公差为d,等比数列的公比为q,q>0,由等差数列和等比数列的通项公式及前n项和公式,列出方程组求解即可得答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论