2022年福建省三明市市第八中学高三数学理期末试卷含解析_第1页
2022年福建省三明市市第八中学高三数学理期末试卷含解析_第2页
2022年福建省三明市市第八中学高三数学理期末试卷含解析_第3页
2022年福建省三明市市第八中学高三数学理期末试卷含解析_第4页
2022年福建省三明市市第八中学高三数学理期末试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年福建省三明市市第八中学高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.求证,P=(x1-)2+(x2-)2+…+(xn-)2,q=(x1﹣a)2+(x2﹣a)2+…+(xn﹣a)2若a≠则一定有()A.P>q B.P<qC.P、q的大小不定 D.以上都不对参考答案:B【考点】平均值不等式在函数极值中的应用.【分析】设f(x)=(x1﹣x)2+(x2﹣x)2+…+(xn﹣x)2,将此式化成二次函数的一般形式,结合二次函数的最值即可进行判定.【解答】解:设f(x)=(x1﹣x)2+(x2﹣x)2+…+(xn﹣x)2,则f(x)=nx2﹣2(x1+x2+…+xn)x+x12+x22+…+xn2当时,f(x)取得最小值,即P<q.故选B.【点评】本题主要考查了二次函数在函数极值中的应用,解答的关键是利用函数思想结合二次函数的最值即可.2.若向量,的夹角为,且||=2,||=1,则与+2的夹角为(

) A. B. C. D.参考答案:A考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用数量积运算性质、向量的夹角公式即可得出.解答: 解:∵向量,的夹角为,且||=2,||=1,∴===1.∴==22+2×1=6,==.∴===,∴与+2的夹角为.故选:A.点评:本题考查了数量积运算性质、向量的夹角公式,属于基础题.3.复数的值是(

)A.

B.

C.

D.1参考答案:D,所以,选D.4.已知当,时,,则以下判断正确的是()A. B.C. D.m与n的大小关系不确定参考答案:C【分析】设,利用导数求得函数在单调递增,再根据,即可求解,得到答案.【详解】由题意,设,则,当时,,单调递增,又由,所以,即,故选C.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,其中解答中设出新函数,利用导数求得函数的单调性是解答的关键,着重考查了推理与运算能力,属于中档试题.5.已知a,b>0,且a≠1,b≠1,若logab>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(b﹣a)>0 C.(b﹣1)(b﹣a)<0 D.(a﹣1)(a﹣b)>0参考答案:B【考点】对数函数的图象与性质.【分析】利用对数函数的性质即可求解.【解答】解:由logab>1?logab﹣1>0即:logab﹣logaa>0∴loga>loga1当a>1时,函数是增函数.则有:,即b>a>1.当1>a>0时,函数是减函数.则有:,即1>a>b>0.考查各项答案,B正确,故选:B.6.函数的定义域是()A.(﹣1,+∞) B.[﹣1,+∞) C.(﹣1,1)∪(1,+∞) D.[﹣1,1)∪(1,+∞)参考答案:C考点: 函数的定义域及其求法.专题: 函数的性质及应用.分析: 依题意可知要使函数有意义需要x+1>0且x﹣1≠0,进而可求得x的范围.解答: 解:要使函数有意义需,解得x>﹣1且x≠1.∴函数的定义域是(﹣1,1)∪(1,+∞).故选C.点评: 本题主要考查对数函数的定义域及其求法,熟练解不等式组是基础,属于基础题.7.函数(,,)的部分图象如图所示,则的值分别为(

)A.2,0

B.2,

C.2,

D.2,参考答案:D8.复数(其中为虚数单位),则下列说法中正确的是( )A.在复平面内复数对应的点在第一象限

B.复数的共轭复数C.若复数为纯虚数,则

D.复数的模参考答案:C9.若两个正实数x,y满足,且不等式有解,则实数m的取值范围是()A.(﹣1,4) B.(﹣∞,﹣1)∪(4,+∞) C.(﹣4,1) D.(﹣∞,0)∪(3,+∞)参考答案:B【考点】基本不等式在最值问题中的应用;基本不等式.【专题】不等式的解法及应用.【分析】将不等式有解,转化为求∴(x+)min<m2﹣3m,利用“1”的代换的思想进行构造,运用基本不等式求解最值,最后解出关于m的一元二次不等式的解集即可得到答案.【解答】解:∵不等式有解,∴(x+)min<m2﹣3m,∵x>0,y>0,且,∴x+=(x+)()=+2=4,当且仅当,即x=2,y=8时取“=”,∴(x+)min=4,故m2﹣3m>4,即(x+1)(x﹣4)>0,解得x<﹣1或x>4,∴实数m的取值范围是(﹣∞,﹣1)∪(4,+∞).故选:B.【点评】本题考查了基本不等式在最值中的应用,不等式的有解问题.在应用基本不等式求最值时要注意“一正、二定、三相等”的判断.运用基本不等式解题的关键是寻找和为定值或者是积为定值,难点在于如何合理正确的构造出定值.对于不等式的有解问题一般选用参变量分离法、最值法、数形结合法求解.属于中档题.10.若集合A={1,2,3},B={0,1,2},则A∩B=()A.{0,1,2,3} B.{0,1,2} C.{1,2} D.{1,2,3}参考答案:C【考点】交集及其运算.【分析】利用交集定义求解.【解答】解:∵集合A={1,2,3},B={0,1,2},∴A∩B={1,2}.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.抛物线的准线为

参考答案:在抛物线中,所以准线方程为。12.函数f(x)=cos(﹣2x)﹣2cos2x在区间[0,]上的取值范围是.参考答案:[﹣2,1]略13.参考答案:略14.设函数f(x)=,若函数g(x)=[f(x)]2+bf(x)+c有三个零点x1,x2,x3,则x1x2+x2x3+x1x3=.参考答案:3﹣a4【考点】根的存在性及根的个数判断.【分析】设f(x)=t,根据f(x)的函数图象得出方程f(x)=t的根的个数,从而得出f(x)=1,故而可求出f(x)=1的三个解,得出答案.【解答】解:不妨设a>1(或0<a<1),作出f(x)的函数图象如图所示:设f(x)=t,由图象可知:当t=1时,方程f(x)=t有3解,当t≠1时,方程f(x)=t有2解,∵函数g(x)=[f(x)]2+bf(x)+c有三个零点,∴关于t的方程t2+bt+c=0有且只有一解t=1,∴f(x)=1,∴x1,x2,x3是f(x)=1的三个解,不妨设x1<x2<x3,则x2=1,令loga|x﹣1|﹣1=1得x=1±a2,∴x1=1﹣a2,x3=1+a2.∴x1x2+x2x3+x1x3=1+a2+1﹣a2+1﹣a4=3﹣a4.故答案为:3﹣a4.15.己知△ABC三边长成等比数列,公比为.则其最大角的余弦值为______.参考答案:16.如图,在等腰三角形中,已知分别是边上的点,且其中若的中点分别为且则的最小值是

.参考答案:17.若二项式展开式中的常数项为60,则正实数a的值为__________;该展开式中的奇数项的系数之和为__________.参考答案:2

365【分析】利用二项式定理的通项公式,通过x的指数为0,求出常数项,可得a的值,令可得与,的值,可得奇数项的系数之和为可得答案.【详解】解:可得二项式展开式中,,可得,可得二项式的常数项为,,由为正实数,可得a=2;令,可得,,可得奇数项的系数之和为,故答案:2;365.【点睛】本题主要考查二项式定理及二项式系数的性质,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知矩阵A=,若矩阵A属于特征值6的一个特征向量为α1=,属于特征值1的一个特征向量为α2=.求矩阵A,并写出A的逆矩阵.参考答案:解:由矩阵A属于特征值6的一个特征向量为α1=可得,=6,即c+d=6;由矩阵A属于特征值1的一个特征向量为α2=,可得=,即3c-2d=-2.解得即A=,A的逆矩阵是.

19.(12分)如图所示,某班一次数学测试成绩的茎叶图(如图1)和频率分布直方图(如图2)都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答如下问题.(注:直方图中[50,60)与[90,100]对应的长方形的高度一样)(1)若按题中的分组情况进行分层抽样,共抽取16人,那么成绩在[80,90)之间应抽取多少人?(2)现从分数在[80,100]之间的试卷中任取2份分析学生失分情况,设抽取的试卷分数在[90,100]之间份数为ξ,求ξ的分布列和数学期望.参考答案:【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)由茎叶图求出总人数,得到分数在[80,90)的人数,然后求解成绩在[80,90)之间应抽人数.(2)分数在[80,90)的人数为6,分数在[90,100]的人数为4,得到ξ的可能取值为:0,1,2,求出概率,得到分布列,求解期望即可.【解答】解:(1)由茎叶图知分数在[50,60)的人数为4,[60,70)的人数为8,[70,80)的人数为10,由频率分布直方图知:[50,60)与[90,100]的人数都为4,故总人数为,∴分数在[80,90)的人数为:32﹣4﹣8﹣10﹣4=6,∴成绩在[80,90)之间应抽:人.(2)∵分数在[80,90)的人数为6,分数在[90,100]的人数为4,∴ξ的可能取值为:0,1,2,∵,∴ξ的分布列为ξ012P∴.【点评】本题考查茎叶图以及频率分布直方图的应用,离散性随机变量的分布列以及期望的求法,考查计算能力.20.2015年7月16日,电影《捉妖记》上映,上映至今全国累计票房已超过20亿,某影院为了解观看此部电影的观众年龄的情况,在某场次的100名观众中随机调查了20名观众,已知抽到的观众年龄可分成5组:[20,25),[25,30),[30,35),[35,40),[40,45),根据调查结果得出年龄情况残缺的频率分布直方图如图所示.(1)根据已知条件,补充画完整频率分布直方图,并估计该电影院观看此部电影的观众年龄的平均数;(2)现在从年龄属于[25,30)和[40,45)的两组中随机抽取2人,求他们属于同一年龄组的概率.参考答案:【考点】频率分布直方图.【专题】应用题;概率与统计.【分析】(1)根据频率分布直方图,利用频率=,计算出对应的频率,补充完整频率分布直方图,再计算观看此部电影的观众年龄平均数即可;(2)求出年龄在[25,30)和[40,45)内的频率与频数,用列举法求出对应的基本事件数,计算概率即可.【解答】解:(1)根据频率分布直方图,年龄在[25,30)的频率为1﹣(0.01+0.07+0.06+0.02)×5=0.2,∴年龄在[25,30)的小矩形的高为=0.04,补充画完整频率分布直方图如图所示,∴估计该电影院观看此部电影的观众年龄的平均数为22.5×0.01×5+27.5×0.04×5+32.5×0.07×5+37.5×0.06×5+42.5×0.02×5=33.5;(2)年龄在[25,30)内的频率为0.2,对应的人数为20×0.2=4,记为a、b、c、d;年龄在[40,45)内的频率为0.02×5=0.1,对应的人数为20×0.1=2,记为E、F;现从这6人中随机抽取2人,基本事件是ab、ac、ad、aE、aF、bc、bd、bE、bF、cd、cE、cF、dE、dF、EF,共15种,属于同一年龄组的基本事件是ab、ac、ad、bc、bd、cd、EF,共7种,所以,所求的概率是P=.【点评】本题考查了频率分布直方图的应用问题,也考查了用列举法求古典概型的概率问题,是基础题目

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论