五轴可重构机床的控制和发展外文文献翻译_第1页
五轴可重构机床的控制和发展外文文献翻译_第2页
五轴可重构机床的控制和发展外文文献翻译_第3页
五轴可重构机床的控制和发展外文文献翻译_第4页
五轴可重构机床的控制和发展外文文献翻译_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

外文文献HindawiPublishingCorporationJournalofRoboticsVolume2011,ArticleID583072,9pagesdoi:10.1155/2011/583072ResearchArticleDevelopmentandControlofa5-AxisReconfigurableMachineToolZ.M.BiDepartmentofEngineering,IndianaUniversity—PurdueUniversityFortWayne,FortWayne,IN46805-1499,USACorrespondenceshouldbeaddressedtoZ.M.Bi,biz@Received13January2011;Revised19March2011;Accepted4May2011AcademicEditor:YangminLiThedevelopmentofahybridreconfigurablemachinetoolhasbeenintroduced.Themachinetoolconsistsofatripod-basedparallelkinematicmachine(PKM)modulewiththreedegreesoffreedom(DOF)andaseriallinearX-YtablewithtwoDOF.ThePKMisinstalledonagantrysystemwhichiscapableofreconfiguringitspositionandorientation.Inthedesignoftripod-basedparallelmechanism,apassivelinkisusedtoenhancethestiffnessandincreasetheworkingload.Toavoidthebuildupoftheheatoftheextensiveactuation,threejointsareactuatedviatheactuatorswithaconstantlength.ThegeometriesofthePKMhavebeenoptimizedforthebestandhighestaccuracy.Inthispaper,itscontrolsystemandtheprototypingdevelopmentarefocused.Anopenarchitectureisapplied,thecontrolmethodologiesaredevelopedandvalidated,andthecorrespondingsoftwaretoolshavebeenimplementedforthesoftwarereconfigurationofthecontrolsystem.IntroductionTheglobalizationofthemanufacturingenvironmentbringsuncertaintiesandturbulencesofcustomers’requirementsandmanufacturingresources.Reconfigurablemanufacturingsystem(RMS)paradigmbecomesaneffectivemeanstoincreasethecompetitivenessandadaptabilityofmanufacturingsystems.AnRMSconsistsofmodularcomponentsthatcanbearrangedtomeetthemachiningneeds(recon-figuration)withminimalornonrecurringcost.Theabilitytoreconfiguremachinesallowsaquickramp-upandrobustnesstoadaptvariouschangesinadynamicproductionenviron-ment.Productionmachineryisusuallyspecializedandverycapitalintensive.OtherbenefitsofanRMSisitspotentialtoreducetheunitcostofmachining;thesamesystemcanservefordifferenttasksand,thus,increasetheutilizationofresources,andthemachinemoduleswithacertainvolumemakeitpossibletobefabricatedandassembledinamassproductionmode.Thebasicstrategytomakeasystemreconfigurableisthemodularizationofsystem.Undermodularizedarchitecture,thesystemisformedfromasetofmodules.Thesemodulescanbeconnectedonewithanotherinterchangeably,andvarioussystemconfigurationscanbegeneratedbyusingdifferenttypesofmodules,changingthenumberofmodules,orchangingthetopologyofmoduleconnections.Eachconfigurationcanbespeciallydesignedtomeetthegivenrequirementsoptimally[1].Systemmodlarizationhasbeenwellrecognizedinmachinetoolindustry.Modularmachinetoolshavebeenonthemarketforafewofdecades.Theinternationalstandardsbecameavailabletomachinemod-ulesintheseventies[2].Researchershavemadecontinuouseffortinimprovingmodularmachinetools.Forexample,HannoverUniversityinitializedaprojectcalledModularSynthesisofAdvancedMachineTools(MOSYN)tosupportthedesignofcustomer-specificconfigurationsofmodularmachinetools[3].Nevertheless,itisworthtonotethattheprimaryobjectiveofthemachine-toolbuilderstomodularizetheirproductsistoproducethevariants;onotherhand,machine-toolusersstillpurchasethesystemswithaspecificconfiguration,andthesesystemsarerarelyreconfiguredaftertheirinstallments.Differingfromtraditionalmodularmachinetools,thereconfigurablemachinetoolattheUniversityofMichiganaimsatmodularity,integrability,customization,convertibility,anddiagnosability.Thesystemisdesignedtoreconfigurefrequentlyinadynamicenvironment[4-6].Unfortunately,thedesignconceptwasnotfullyimplemented,andsomeobstaclessloweddowntheirresearchanddevelopment[7].ThereconfigurableParallelKinematicMachine(PKM)isanotheralternativetoreconfiguremachinetools[8-10].Theoretically,PKMshavethepotentialstoachievehigherspeed,higheraccuracy,anddealwithaheavierload.However,thecharacteristicsofthePKMshavenotbeenwellstudied.MostofthecommerciallyavailablePKMsarehigh-costmachinesthatprovideloweraccuracythanconventionalmachinetools[7,11].MorestudiesareondemandtodevelopcompetitivePKMs.Forexample,Zhaoetal.[12]introducedanewparallelsimulatorwithsixdegreesoffreedom(DOF);thisnewPKMadoptsredundantactuationstoincreasethecapacitytoresistexternalloadandprolongtheactuators’lifetime.Redundancyofinversekinematicsforaredundantrobotisoftenaddressedbythepseudoinversemethod;Wangetal.expandedthismethodasaresolutionfortheredundantrelationsatvelocityandaccelerationlevels,socalledclosed-loopinversekinematicsalgorithmwasproposedtocontrola7-DOFredundantPKM[13].YunandLidevelopedthestiffnessmodelsfortheflexurehinges[14];theirworkhasitssignificanceinpredictingthedeflectionsandimprovingtheprecisionofPKMs.Researchershavecontinuedinmakingprogressonreconfigurableroboticsystems.Forexample,atypeofsquare-cubic-cellmodulehasbeendesignedasthebasicelementtobuildvariousroboticconfigurationsfordifferentapplication.Thetargetedconfigurationscanbeopenloop,closedloop,oracombinationofboth[15].Todevelopacost-effectivePKMmachinetool,thetripod-basedPKMisfocusedduetoitstwosignificantmerits,thatis,theversatilityandthebenefitsofaclosed-loopmechanism.Tripod-basedPKMsarethemostversatileoneamongtheexistingPKMs.Atripod-basedPKMtypicallypossessesthreeDOF.Dependingonitsstructure,itcanproduceanend-effectormotionwiththepurerotation,thepuretranslation,oracombinationofrotationandtranslation.Tripod-basedPKMscanperformmanydifferentmachiningoperationssincethemajorityofthemachiningoperationsrequireamotionwithfiveorlessDOF[9].Atripod-basedPKMcanbeusedasastandalonemachineoramoduleinasystem.Asastand-alonemachine,itcanbeasubstitutionofatraditionalmachinetoolwiththreeorlessDOF.Asasystemmodule,itcanbecombinedwithotheractuatedmodulesorsubsystems.Anewtripod-basedmachinewithapassiveleghasbeenproposedbytheauthor,andthedetailsofdesignmethodologiesandassistivedesigntoolboxhavebeenreported[16,17].Inthispaper,thecontrolmethodandimplementationofthismachinetoolwillbefocused.Theremainderofthepaperisorganizedasfollows.InSection2,thehybridmachinestructureisintroduced,theparallelstructureforpositioningisspeciallyexamined,anditskinematicmodelisoverviewed.InSections3and4,therequirementsofsystemcontrolarediscussed,andcontrolarchitectureisproposedaccordingly.Thecontrolmodelisdevelopedforthemachinetool,andtheimplementationofsystemcontrolisdiscussed.InSection5,acalibrationapproachforsystemreconfigurationisintroduced.FinallyinSection6,theresearchworkspresentedinthispaperaresummarized.StructureofFive-DOFReconfigurableMachineToolFigures1(a)and1(b)haveillustratedthevirtualmodelandphysicalmodelofthenewhybridreconfigurablemachinetool,respectively.Thismachinetoolconsistsofthreemodules:atripodtool,anX-Ytable,andareconfigurablearch.Thismachinetoolishybrid,thepositioningstructureisatripod-basedPKMwiththreeDOF,andtheorientingstructureisaserialwristwithtwoDOF.Thetripod-basedPKMisthemostimportantmodule.Themodularizedtripod-basedPKMincludesthreelinearactuators;theseactuatorscanbereconfiguredandintegratedwiththecustomisablebaseandend-effectorplatforms.Thegeometriesofthebaseandend-effectorplatformscanchangethebehavioursoftheparallelstructuresignificantly.Thetripod-basedPKMstructureisexpectedtoprovidetherotationsaboutXaxisandYaxisandthetranslationalongheZaxis.ReconfigurabilityofthemachinetoolcanbefurtherenhancedbytheadjustmentsoftheX-Ytableandreconfigurablearch.Bothofthemarereconfigurable.TheX-YtableprovidesvariousmotionrangesoftranslationalongXandYaxes,anditsheightalongtheZaxiscanbereconfiguredoffline.Thearchisanassemblyofthreecomponents:twoverticalcolumnsandahorizontalbeam.Theorientationofthehorizontalbeamcanbereconfiguredtoaccommodatethechangesoflocationandorientationoftheworkingvolume.Thevariationsofthereconfigurablemachinetoolarefromsomecustomerizedmodulesinthesystem.Thedimensionsofthesemodulessuchasbinarylegsandtheplatformscanbecustomizedbasedonthegiventask.Theadjustablearchandthex-ytableallowformanyconfigurationstomeetdifferentmanufacturingrequirements,forexample,changingfromaverticalconfigurationatvariousdiscreteanglestowardsahorizontalconfiguration,ifrequired.Systemcontrolsoftwareisalsoreconfigurabletorepresentacorrectkinematicbehaviourofthereconfiguredmachinetool.Thekeytothisreconfigurationisthequickverificationofthenewmachinegeometry.Insteadoflengthycalibrationofthemachine,onlyaquickmeasurementofafewreferencepointsisrequired,andthecalibrationofthemachineisaccomplishedinthecontrollerinternally.3.Tripod-BasedPKMThetripod-basedPKMofthemachinetoolisparameterizedinFigure2.Therearethreeplatforms:baseplatform,middleplatform,andend-effectorplat-form.Thebaseplatformisfixedontheground.Themiddleplatformistosupportguide-wayofactiveleg.Theend-effectorplatformistomountatoolorgripper.Apassivelinkisinstalledbetweenthemiddleplatformandtheend-effector.Activelegisconnectedtotheend-effectorplatformbyasphericaljointat,andtotheslideoftheactiveprismaticjointbyauniversaljointatD.Thepassivelegisfixedonthemiddleplatformatoneend,andconnectedtotheend-effectorplatformbyauniversaljointattheotherend.Theparametersforthedescriptionofthetripodmachinetoolareasfollows:theangleαi(i=1,2,3)betweenOBandx,theangle(i=1,2,3)betweenandx,theradiusofthebaseplatform,theradiusoftheend-effectorplatform,thedirectionofaguide-way,andthelengthofanactiveleg.TheDOFofthetripod-basedPKMcanbecalculatedasf=6×(n−1)−×=3,(1)wheref:DOFofthemechanism,n:thenumberofrigidbodiesincludingthebase,ji:thenumberofjointswithi-DOF.Notethatthetripod-basedPKMhas8rigidbodies,3prismaticjoints,3rotationaljoints,and3sphericaljoints.Thecompletedescriptionofthemotionofarigidbodyrequiresthreerotationalparameters(θx,θy,θz)andthreetranslationalparameters(x,y,z).However,x-andy-translationsandz-rotationareeliminatedbecauseofthepassivelink.Therefore,themotionoftheendeffectorcanbefullydescribedbythreeindependentvariablesθx,θy,andz,whereθxandθyaretherotationsaboutxandy,andzisthetranslationalongz.Thepostureoftheendeffectortoolisrepresentedby,(2)whereTisthepostureoftheend-effectorwithrespectto{O—xyz}.,(3)istherotationalmatrixoftheendeffector.Pe=[00z]isthecentralpositionOoftheendeffector.Whentherequiredpositionoftheend-effectortoolisspecified,inversekinematicsistofindthejointdisplacements.Assumethatthejointdisplacementofactiveprismaticjointiisu,itcanbederivedbasedonthefactthatthelengthofanactivelinkisfixed,thus,,(4)where,(5)Notethatthesolutionofufrom(4)shouldbeexaminedtoensurenoneofactiveorthepassivejointsexceedsitsmotionlimit.3.1.TaskandJointWorkspace.WorkspaceisanimportantcharacteristictodescribetheperformanceofaPKM.Workspaceisusuallydefinedasthesetofreachablepointsofthetoolcenterpoint(TCP)intheCartesiancoordinatesystem.Itcanbedeterminedbytheinversekinematicsolvernumerically,anexampleoftaskworkspacehasbeenillustratedinFigure3(a)forthismachinetool.Motionrangesofjointshaveusuallybeengivenforthereconfigurablemachinetool.However,whetherornotajointcouldbemovedfreelyoveritsmotionrangedependsonthestructureofthePKMandtheconfigurationofthePKMatacertainposition.ThePKMistotransferjointmotionsintothemotionofTCP.Anewconceptcalledjointworkspaceisproposedtomeasuretheefficiencyofthistransformation[18].ThesolvertoforwardkinematicsisneededtoacquirethejointworkspaceofaPKM.Wehaveformulatedtheforwardkinematicproblemasapolynomialequationwhosecoefficientscanbedeterminedautomatically.AsshowninFigure3(b),anexampleofthejointworkspacehasbeenillustratedfortheprototypedPKM.3.2.DeflectionunderExternalLoads.DeflectionoftherigidbodiesunderaninternalorexternalloadcausespositionalandorientationalerrorsoftheTCP.StiffnessisdefinedtomeasurethecapabilityofaPKMtoresistthedeflection.SystemstiffnessalongallofthesixCartesianmotionaxesisevaluatedbasedonakinetostaticmodel.Figure4showsanexampleofthestiffnessdistributionalongallofthesixmotionaxes,respectively,foracross-sectionwherealloftheactivejointsareinthemiddleoftheirmotionranges.3.3.EstimationofDrivingForces.SincealloftheexistingPKMsusekinematiccontrol,adynamicmodelofaPKMbecomeslessimportant.However,atypicalrobotictasknotonlyhastherequirementsofagivenmotiontrajectorybutalsotherequirementsofaworkingload.Adynamicmodelwillbeneededtodeterminehowanexternalloadiscarriedoutbythedrivingforcesattheactuators.Atanextremecasewhentheexternalloadbecomescritical,thedynamicmodelisrequiredtoestimateifanactuatedjointhasthesufficientdrivingforcetoresisttheexternalload.AdynamicmodelbasedonNewton-Eulerapproachhasbeendeveloped.Themodelingprocedureisasfollows:(i)thedisplacements,velocities,andaccelerationsofthejointmotionsareobtainedfromaninversekinematicmodelunderthegivenend-effectormotion;(ii)thevelocitiesandaccelerationsofthejointsandmasscentersofallbodiesarederivedsequentially;(iii)theNewton’slawandEuler’sequationareappliedtocalculateinertiaforces/moments,andtheequilibriumequationsaredefinedforeachofbodies;(iv)thedynamicmodelofthesystemisassembledfromtheequilibriumequationsofthebodies;(v)thedynamicmodelissolvedtogettheforces/torquesofjoints.Thedrivingforcesoftheactuatedjoints,aswellasthereactionforcesonanyofpassivejoint(s),canbeanalyzed.Figure5hasshownanexampleofthedrivingforcescorrespondingtoagivenTCPmotion.ControlArchitectureandModelAftersystemreconfiguration,themachiningoperationneedstocontrolthecomponentsincludingthreelinearactuators,thespindleontheend-effectortool,andtwolinearactuatorsontheX-Ytable.Sincethereconfigurablemachineisahybrid,themotionsofthesecomponentsarecoupledwhenthemotionofthetaskisgiven.ThecontrolarchitectureforthereconfigurablemachinetoolisshowninFigure6.Themotionofthetripod-basedPKMlinksallofthecontrolexpectationsofthesystemcomponentsincludingthetripodtool,thespindle,andtheX-Ytable.ThedeterminationofthefeeddepthisbasedontheZtranslationsofbothfromthespindleandthetripodtool.ThecoordinatesoftheX-YtablemustcompensatetheXandYdisplacementscausedbytherotationofthespindleaboutXandY.Whenthemachineissetattheverticaltoolorientation,themachineanditscontrolbehavelikearegular5-axismachinewithatiltingandpivotingtoolhead.ThetoolpathisgeneratedintheCartesianspace,andpostprocessedwithagenericCAMpackagefora5-axismachine.Theoperation,programming,andcontrolofthetripodmodulearetransparenttotheuser.Thelastthreecomponentsofamachinepositioningcommand,Z,A,andBareusedtorepresentthedisplacementsofthreeactuatedjointsfromtheinversekinematics.WhenthemachineisconfigureddifferentlyfromtheVerticaltoolaxis,additionaltransformationshavetobecarriedout.Forthecalculationsofgeneraltransformations,thehomogeneouscoordinatesareused,whichwereoriginallydevelopedforrobotmanipulatorcontrol[18].Notethatanofflinesimulationofmachiningprocessishelpful.Whentheheadangleisgettingclosertothehorizontal,theworkingenvelopeisdegenerating.Inthehorizontalposition,themachine“looses”adegreeoffreedom,theZtoolaxismovementisintheTable’sX-Yplane.References[1]Z.M.BiandW.J.Zhang,“Modularitytechnologyinmanufacturing:taxonomyandissues,”InternationalJournalofAdvancedManufacturingTechnology,vol.18,no.5,pp.381–390,2001.[2]Z.M.Bi,S.Y.T.Lang,W.M.Shen,andL.Wang,“Reconfigurablemanufacturingsystems:thestateoftheart,”InternationalJournalofProductionResearch,vol.46,no.4,pp.967–992,2008.[3]D.Sniegulska-Gradzka,M.Klasztorny,andM.Szefarczyk,“Anapproximatemethodfordeterminingstaticanddynamicstiffnessofmachinetoolswithrollingguideways,”ArchivesofCivilandMechanicalEngineering,vol.4,no.2,2004.[4]Y.Koren,“WillindustryadoptPKMs?”ManufacturingEngineering,vol.122,no.3,p.240,1999.[5]Y.Koren,U.Heisel,F.Jovaneetal.,“Reconfigurablemanufacturingsystems,”CIRPAnnals,vol.48,no.2,pp.527–540,1999.[6]Y.KorenandA.G.Ulsoy,“Reconfigurablemachinetoolsandreconfigurablesystems,”inProceedingsofthe9thInternationalMachineToolEngineer’sConference(IMEC’00),pp.180–189,Tokyo,Japan,2000.[7]Y.-M.Moon,Reconfigurablemachinetooldesign:theoryanapplication,Ph.D.dissertation,TheUniversityofMichigan,AnnArbor,Mich,USA,2000.[8]R.Katz,Z.Li,andF.Pierrot,“Engineeringresearchcenterforreconfigurablemachiningsystems:conceptualdesignofahigh-speeddrillingmachine(HSDM)basedonPKMmodule,”ERC/RMSReport37,CollegeofEngineering,TheUniversityofMichigan,AnnArbor,Mich,USA,2002.[9]A.V.Cooke,N.Shankar,L.Jonesetal.,“Advancedreconfigurablemachineforflexiblefabrication,”inSmartStructuresandMaterials:IndustrialandCommercialApplicationsofSmartStructuresTechnologies,vol.2447ofProceedingsoftheSPIE,pp.102–114,SanDiego,Calif,USA,March1995.[10]R.Bostelman,A.Jacoff,F.Proctor,T.Kramer,andA.Wavering,“Cable-basedreconfigurablemachinesforlargescalemanufacturing,”inProceedingsoftheJapan-USASymposiumonFlexibleAutomation,Mich,USA,July2000.[11]I.FassiandG.J.Wiens,“Multiaxismachining:PKMsandtraditionalmachiningcenters,”JournalofManufacturingProcesses,vol.2,no.1,pp.1–14,2000.[12]Y.Zhao,F.Gao,W.Li,W.Liu,andX.Zhao,“Developmentof6-dofparallelseismicsimulatorwithnovelredundantactuation,”Mechatronics,vol.19,no.3,pp.422–427,2009.[13]J.G.Wang,Y.Li,andX.Zhao,“Inversekinematicsandcontrolofa7-DOFredundantmanipulatorbasedontheclosed-loopAlgorithm,”InternationalJournalofAdvancedRoboticSystems,vol.7,no.4,pp.1–9,2010.[14]Y.YunandY.Li,“Designandanalysisofanovel6-DOFredundantactuatedparallelrobotwithcomplianthingesforhighprecisionpositioning,”NonlinearDynamics,vol.61,no.4,pp.829–845,2010.[15]J.Liu,Y.Wang,S.Ma,andY.Li,“Enumerationofthenon-isomorphicconfigurationsforareconfigurablemodularrobotwithsquare-cubic-cellmodules,”InternationalJournalofAdvancedRoboticSystems,vol.7,no.4,pp.58–68,2010.[16]Z.M.Bi,S.Y.T.Lang,P.E.Orban,M.Verner,andD.Zhang,“Integrateddesigntoolboxfortripod-basedparallelkinematicmachines,”ASMEJournalofMechanicalDesign,vol.129,no.8,pp.799–807,2007.[17]Z.M.BiandS.Y.T.Lang,“Jointworkspaceofparallelkinematicmachines,”RoboticsandComputer-IntegratedManufacturing,vol.25,no.1,pp.57–63,2009.[18]R.P.Paul,RobotManipulators:Mathematics,ProgrammingandControl,MITPress,Cambridge,Mass,USA,1981.[19]Y.AltintasandN.A.Erol,“Openarchitecturemodulartoolkitformotionandmachiningprocesscontrol,”CIRPAnnalvol.47,no.1,pp.295–300,1998.附录B中文翻译五轴可重构机床的控制和发展文章主要介绍混合可重构机床的发展,这种混合可重构机床主要是由具有三个自由度(DOF)模块和两自由度串行线性X-Y工作台组成的三脚架并联机床(PKM)。安装在龙门系统上的并联机床能够重新配置它的位置和方向。基于并联机构的三脚架设计,这种被动的链接可以提高刚度并增加工作负荷。为了避免广泛的致动的热积累,通过具有恒定长度的制动器驱动三个关节。并联机床的几何构型是最好和最高的精度优化,在本文中,其控制系统和原型开发是重点。应用一个开放的体系结构,其控制方法已被开发和验证,以及相应的软件工具可重构已实施的控制系统的软件。引言制造环境的全球化带来的不确定性和客户需求与制造资源的动荡。可重构制造系统(RMS)成为提高竞争力和制造系统适应性的有效手段。RMS由模块化的组件,可以设置以满足最小的加工要求(重构)或非经常性费用。调整机器的能力,允许快速的上升和鲁棒性适应动态生产环境的各种变化。专业生产机械通常属于资本密集型。一个有效的办法有潜力减少机械加工的单位成本;同一个系统可以作用于不同的任务,因此,提高资源的利用,以及机模块与一定的体积可以使一个大规模生产模式被制造和组装出来成为可能。使一个系统可重构的基本策略是系统的模块化设计。在模块化的体系结构,系统是由一组模块组成的。这些模块可以与另一个类似的连接,和不同的系统配置可以通过使用不同类型的模块生成,改变模块的数量,或改变模块连接的拓扑结构这几种方法。每个配置可以被专门设计来满足给定的要求并进行优化[1]。在机床工业系统的标准化已被人熟知。组合机床已上市很多年了。在七十年代国际标准成为可用的机器模型[2]。研究人员已经在提高组合机床上作出了不懈的努力。例如,汉诺威大学初始化一个称为先进的机床模块综合项目的题目为(MOSYN)支持模块化机床[3]客户特定的配置设计。然而,值得注意的是对产品进行模块化的机床制造商的首要目标是产生变异;另一方面,机床用户还是购买具有特定配置的系统和他们分期付款后很少重新配置后的系统。不同于传统的组合机床,密歇根大学的可重构机床的目的是模块化,可积性,定制,兑换,和可诊断性。该系统被设计的目的是在动态环境中[4-6]能频繁重构。然而不幸的是,由于设计理念落实不到位,他们的研究与开发[7]遇到了一些障碍。可重构并联机床(PKM)是另一种配置的工具机[8]。从理论上讲,它有潜力实现高速,高精度,并能处理较重的负荷。然而,该并联机构的性能没有得到很好的研究。大多数的市场销售的PKMs是高成本的机器,提供的精度比传统机床较低[7,11]。并联机床竞争需要开展更多的研究。例如,赵等人。[12]提出了一个新的具有六自由度(DOF)的并行模拟器;这种新的采用冗余的容量能够抵御外部负载的增加,延长促动器的寿命。冗余度机器人逆运动学往往是由伪逆法解决;王等人在速度和加速度水平的冗余关系的分辨率上扩展了这一方法,所以提出了控制自由度冗余并联机床闭环逆运动学算法[13]。云李开发了柔性铰链的刚度模型[14];他们的工作在预测挠度和提高重构精度上具有重要的意义。研究人员在对可重构机器人系统上可不断进步。例如,一个类型的平方立方单元模块被作为一个基本要素建立各种机器人构型而有着不同的应用。有针对性的配置可以是开环,闭环,或两者的组合[15]。开发一个具有成本效益的并联机床,三脚架并联机床有两个显著的优点,即通用性和闭环机构的好处。三脚架并联机床在现有的个人知识管理系统中是最通用的。一个三脚架并联机床通常具有三个自由度。根据它的结构,它可以使端部执行器的运动产生纯旋转的,纯粹的平移,或者旋转和平移的混合运动。三脚架并联机床由于加工操作的大部分需要五或更少的自由度[9]运动,因而可以执行许多不同的加工操作。三脚架并联机床可以作为一个单独的设备或系统中的模块来使用。作为一个单独的设备,它可以是一个替代的三或更少的自由度的传统机床。作为一个系统模块,它可以结合其他驱动模块或子系统。具有一个被动的腿的三脚架机已经被提出,其设计方法技术和辅助设计工具箱的细节已被报道[16,17]。在本文中,将主要提到该机床的控制方法和实施。本文的其余部分安排如下。在2节中,介绍混合机的结构,专门研究用于定位的平行结构,其运动学模型将会看到。在3和4节,分别讨论了系统的控制要求,并提出了相应的控制结构。控制模型开发的机床,以及控制系统的实现进行了讨论。在5节中,介绍了系统重构的校准方法。最后,在6节中,总结了本文的研究工作。2.五自由度可重构机床的结构图1(a)和1(b)所示的分别是虚拟模型和新混合的物理模型的可重构机床。本机床由三个模块组成:一个三脚架的工具,X-Y工作台,和一个可重构的弓。本机床是混合的,定位结构是一个具有三个自由度三脚架并联机床,定向结构是具有两自由度的串行手腕。三脚架并联机床是最重要的模块。模块化的三脚架并联机床包括三个线性致动器;这些致动器通过重新配置和定制集成能够成为基座和端部执行器的平台。该基地和端部效应或平台的结构可以显著改变平行结构的行为。三脚架并联机床的结构预计将提供关于X轴和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论