版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邯郸市南徐村乡中学2021年高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知命题p1:?x∈R,使得x2+x+1<0;命题p2:?x∈[﹣1,2],使得x2﹣1≥0,则下列命题是真命题的是()A.(¬p1)∧p2 B.p1∨p2 C.p1∧(¬p2). D.(¬p1)∨(¬p2)参考答案:D【考点】命题的真假判断与应用.【分析】先判断命题p1,p2的真假,进而根据复合命题真假判断的真值表,可得答案.【解答】解:x2+x+1=0的△=1﹣4=﹣3<0,故命题p1:?x∈R,使得x2+x+1<0为假命题;x∈(﹣1,1)时,x2﹣1<0,故命题p2:?x∈[﹣1,2],使得x2﹣1≥0为假命题;故(¬p1)∧p2,p1∨p2,p1∧(¬p2)均为假命题.(¬p1)∨(¬p2)为真命题,故选:D.2.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36π B.64π C.144π D.256π参考答案:C【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时VO﹣ABC=VC﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.3.当时,函数,则下列大小关系正确的是(
)A. B.C. D.参考答案:D【分析】对函数进行求导得出在上单调递增,而根据即可得出,从而得出,从而得出选项.【详解】∵,∴,由于时,,函数在上单调递增,由于,故,所以,而,所以,故选D.【点睛】本题主要考查增函数的定义,根据导数符号判断函数单调性的方法,以及积的函数的求导,属于中档题.4.函数的图象如右图,则的一组可能值为(A) (B)
(C)
(D)参考答案:D5.在等比数列{an}中,若a3=2S2+1,a4=2S3+1,则公比q=(
)A.﹣3 B.3 C.﹣1 D.1参考答案:B【考点】等比数列的性质.【专题】计算题;等差数列与等比数列.【分析】由已知条件,求出a4﹣a3=2a3,由此能求出公比.【解答】解:等比数列{an}中,∵a3=2S2+1,a4=2S3+1,∴a4﹣a3=2S3+1﹣(2S2+1)=2(S3﹣S2)=2a3,∴a4=3a3,∴q=3.故选:B.【点评】本题考查等比数列折公比的求法,是中档题,解题时要熟练掌握等比数列的通项公式和前n项和公式.6.在三棱锥中,底面,,,,,则点到平面的距离是(
)
A.
B.
C.
D.参考答案:B7.若直线ax﹣2y﹣1=0与直线x+y﹣2=0互相垂直,则a的值为()A.﹣ B. C.﹣2 D.2参考答案:D【考点】直线的一般式方程与直线的垂直关系.【专题】直线与圆.【分析】由题意可得,这两条直线的斜率之积等于﹣1,由此求得a的值.【解答】解:∵直线ax﹣2y﹣1=0与直线x+y﹣2=0互相垂直,∴它们的斜率之积等于﹣1,即=﹣1,求得a=2,故选:D.【点评】本题主要考查两直线垂直的性质,属于基础题.8.设成立的充分不必要条件是A
B
C
D
x<-1参考答案:D9.函数的零点所在的区间是A. B.(-1,0) C.(1,2) D.(-2,-1)参考答案:B10.设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4),且⊥,∥,则|+|=()A. B. C. D.10参考答案:B【考点】96:平行向量与共线向量;93:向量的模.【分析】由向量平行与垂直的充要条件建立关于x、y的等式,解出x、y的值求出向量的坐标,从而得到向量的坐标,再由向量模的公式加以计算,可得答案.【解答】解:∵,且,∴x?2+1?(﹣4)=0,解得x=2.又∵,且,∴1?(﹣4)=y?2,解之得y=﹣2,由此可得,,∴=(3,﹣1),可得==.故选:B二、填空题:本大题共7小题,每小题4分,共28分11.已知a>0,b>0,a+b=2,则y=+的最小值为.参考答案:【考点】基本不等式.【分析】利用题设中的等式,把y的表达式转化成()()展开后,利用基本不等式求得y的最小值.【解答】解:∵a+b=2,∴=1∴y==()()=++≥+2=(当且仅当b=2a时等号成立)则的最小值是故答案为:.12.圆x2+y2=1和4x2+4y2–16x–8y+11=0的公切线的斜率是
。参考答案:13.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=叫曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:(1)函数y=x3﹣x2+1图象上两点A、B的横坐标分别为1,2,则φ(A,B)>;(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;(3)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)≤2;(4)设曲线y=ex上不同两点A(x1,y1),B(x2,y2),且x1﹣x2=1,若t?φ(A,B)<1恒成立,则实数t的取值范围是(﹣∞,1);以上正确命题的序号为(写出所有正确的)参考答案:(2)(3)【考点】命题的真假判断与应用.【分析】由新定义,利用导数逐一求出函数y=x3﹣x2+1、y=x2+1在点A与点B之间的“弯曲度”判断(1)、(3);举例说明(2)正确;求出曲线y=ex上不同两点A(x1,y1),B(x2,y2)之间的“弯曲度”,然后结合t?φ(A,B)<1得不等式,举反例说明(4)错误.【解答】解:对于(1),由y=x3﹣x2+1,得y′=3x2﹣2x,则,,y1=1,y2=5,则,φ(A,B)=,(1)错误;对于(2),常数函数y=1满足图象上任意两点之间的“弯曲度”为常数,(2)正确;对于(3),设A(x1,y1),B(x2,y2),y′=2x,则kA﹣kB=2x1﹣2x2,==.∴φ(A,B)==,(3)正确;对于(4),由y=ex,得y′=ex,φ(A,B)==.t?φ(A,B)<1恒成立,即恒成立,t=1时该式成立,∴(4)错误.故答案为:(2)(3).14.已知,,那么的值为.参考答案:15.若不等式对任意的实数恒成立,则实数的取值范围是
。参考答案:
16.从装有个球(其中个白球,1个黑球)的口袋中取出个球,共有种取法。在这种取法中,可以分成两类:一类是取出的个球全部为白球,共有,即有等式:成立。试根据上述思想化简下列式子:
。。参考答案:略17.得,则推测当时有
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,,,,函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)求函数在区间上的值域.参考答案:(1).(2)
由(1)可知,.当.有,.所以函数.19.如图,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)过点E作截面EFH∥平面A1CD,分别交CB于F,A1B于H,求截面EFH的面积;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE成600的角?说明理由.参考答案:【考点】二面角的平面角及求法;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(1)证明DE⊥平面A1CD,可得A1C⊥DE,利用A1C⊥CD,CD∩DE=D,即可证明A1C⊥平面BCDE;(2)过点E作EF∥CD交BC于F,过点F作FH∥A1C交A1B于H,连结EH,则截面EFH∥平面A1CD,从而可求截面EFH的面积;(3)假设线段BC上存在点P,使平面A1DP与平面A1BE成60°的角,建立坐标系,利用向量知识,结合向量的夹角公式,即可求出结论.【解答】(1)证明:∵CD⊥DE,A1D⊥DE,CD∩A1D=D,∴DE⊥平面A1CD.又∵A1C?平面A1CD,∴A1C⊥DE.又A1C⊥CD,CD∩DE=D,∴A1C⊥平面BCDE…(2)解:过点E作EF∥CD交BC于F,过点F作FH∥A1C交A1B于H,连结EH,则截面EFH∥平面A1CD.因为四边形EFCD为矩形,所以EF=CD=1,CF=DE=4,从而FB=2,HF=.∵A1C⊥平面BCDE,FH∥A1C,∴HF⊥平面BCDE,∴HF⊥FE,∴.…(3)解:假设线段BC上存在点P,使平面A1DP与平面A1BE成60°的角.设P点坐标为(a,0,0),则a∈[0,6].如图建系C﹣xyz,则D(0,1,0),A1(0,0,),B(6,0,0),E(4,1,0).∴,.设平面A1BE法向量为,则,∴,∴,设平面A1DP法向量为,因为,.则,∴,∴.则cos<,>===,∴5656a2﹣96a﹣141=0,解得∵0<a<6,∴所以存在线段BC上存在点P,使平面A1DP与平面A1BE成60°的角.…【点评】本题考查线面平行,考查线面角,考查学生分析解决问题的能力,属于中档题.20.设函数f(x)=(1+x)2﹣2ln(1+x)(1)若关于x的不等式f(x)﹣m≥0在[0,e﹣1]有实数解,求实数m的取值范围.(2)设g(x)=f(x)﹣x2﹣1,若关于x的方程g(x)=p至少有一个解,求p的最小值.(3)证明不等式:(n∈N*).参考答案:【考点】利用导数研究函数的单调性;函数恒成立问题.【分析】(1)依题意得f(x)max≥m,x∈[0,e﹣1],求导数,求得函数的单调性,从而可得函数的最大值;(2)求导函数,求得函数的单调性与最值,从而可得p的最小值;(3)先证明ln(1+x)≤x,令,则x∈(0,1)代入上面不等式得:,从而可得.利用叠加法可得结论.【解答】(1)解:依题意得f(x)max≥m,x∈[0,e﹣1]∵,而函数f(x)的定义域为(﹣1,+∞)∴f(x)在(﹣1,0)上为减函数,在(0,+∞)上为增函数,∴f(x)在[0,e﹣1]上为增函数,∴∴实数m的取值范围为m≤e2﹣2(2)解:g(x)=f(x)﹣x2﹣1=2x﹣2ln(1+x)=2[x﹣ln(1+x)],∴显然,函数g(x)在(﹣1,0)上为减函数,在(0,+∞)上为增函数∴函数g(x)的最小值为g(0)=0∴要使方程g(x)=p至少有一个解,则p≥0,即p的最小值为0(3)证明:由(2)可知:g(x)=2[x﹣ln(1+x)]≥0在(﹣1,+∞)上恒成立所以ln(1+x)≤x,当且仅当x=0时等号成立令,则x∈(0,1)代入上面不等式得:即,即所以ln2﹣ln1<1,,,…,将以上n个等式相加即可得到:21.某商场为提高服务质量,随机调查了名男顾客和名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意不满意男顾客4010女顾客3020
(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:
参考答案:(1)男顾客;女顾客.(2)有的把握认为男、女顾客对该商场服务的评价有差异.【分析】(1)分别利用公式计算满意的概率.(2)计算,再和临界值表作比较得到答案.【详解】(1)男顾客的满意概率为;女顾客的满意概率为.(2),有的把握认为男、女顾客对该商场服务的评价有差异.【点睛】本题考查了概率的计算,独立性检验,是常考题型.22.在直角坐标系中,直线l的参数方程为t为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)求直线l被曲线C所截得的弦长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 团队建设管理培训40
- 中原地产-拓展客户与行销技巧
- 〈〈钱塘湖春行〉课件图
- 《我要健康成长》课件
- 《展会招商的技巧》课件
- 梵高-英文课件(在文辑中配有英文演讲稿)
- 低温预制食品智能化生产项目可行性研究报告模板-备案拿地
- 工学《动能 动能定理》课件设计
- 单位人力资源管理制度品读汇编十篇
- 单位管理制度展示汇编员工管理十篇
- 小班数学《香香的饼干》
- 医院工会经费使用与管理办法、制度规则
- 2022年外交学院辅导员招聘笔试题库及答案解析
- 磁致伸缩液位传感器KYDM-路线设置使用
- 收割机转让协议
- 中学历史教育中的德育状况调查问卷
- 煤矿煤业掘进工作面班组安全确认工作记录表 模板
- 第8期监理月报(江苏版)
- 建筑工程质量管理体系文件
- 乙丙橡胶电力电缆绝缘一步法硅烷交联工艺
- 中止施工安全监督申请书(范例)
评论
0/150
提交评论