版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年河北省保定市高碑店车屯中学于庄分校高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的9.若圆C的半径为1,圆心在第一象限,且与直线和轴都相切,则该圆的标准方程是A.
B.
C.
D.
参考答案:A略2.已知条件p:k=;条件q:直线y=kx+2与圆x2+y2=1相切,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】由直线y=kx+2与圆x2+y2=1相切,可得:=1,解得k即可判断出结论.【解答】解:由直线y=kx+2与圆x2+y2=1相切,可得:=1,解得k=.∴p是q的充分不必要条件.故选:A.3.双曲线与椭圆的离心率互为倒数,则()A.
B.
C.
D.参考答案:B4.数列…中的一个值等于
A.
B.
C.
D.参考答案:C略5.在中,角,,的对边分别为,,,且,则(
)A.
B.
C.
D.参考答案:A6.是的什么条件(
)A.充分必要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分与不必要参考答案:A7.在古希腊,毕达哥拉斯学派把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的石子可以排成一个正三角形(如图),则第10个三角形数是()A.35 B.36 C.45 D.55参考答案:D【考点】归纳推理.【分析】设第n个三角形数即第n个图中有an个点;观察图形可得,第二个图中点的个数比第一个图中点的个数多2,即a2﹣a1=2,第三个图中点的个数比第二个图中点的个数多3,即a3﹣a2=3,依此类推,可得第n个图中点的个数比第n﹣1个图中点的个数多n,即an﹣an﹣1=n,将得到的式子,相加可得答案.【解答】解:设第n个三角形数即第n个图中有an个点;由图可得:第二个图中点的个数比第一个图中点的个数多2,即a2﹣a1=2,第三个图中点的个数比第二个图中点的个数多3,即a3﹣a2=3,…第n个图中点的个数比第n﹣1个图中点的个数多n,即an﹣an﹣1=n,则an=1+2+3+4+…+n=,n=10时,a10=55.故选:D.8.已知、、成等比数列,且,若,为正常数,则的取值范围是(
)A.
B.
C.
D.参考答案:B略9.若执行如图所示的程序框图,如果输入,则输出的的值是
(
)A.
B.
C.
D.参考答案:A10.某中学领导采用系统抽样方法,从该校七年级全体800名学生中抽50名学生做牙齿健康检查。现将800名学生从1到800进行编号,求得间隔数k=16,即每16人抽取一个人。在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是(
)A.40.
B.39.
C.38.
D.37.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.从中任取三个不同的数作为椭圆方程中的系数,则确定不同的椭圆的个数为______________。参考答案:12略12.的夹角为,则
参考答案:13.已知角的终边与单位圆交点的横坐标是,则 .参考答案:试题分析:由角α的终边与单位圆交点的横坐标是,即.由于.所以.
14.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为_____.参考答案:4【分析】利用平均数、方差的概念列出关于的方程组,解方程即可得到答案。【详解】由题意可得:,设,,则,解得,∴故答案为:4.
15.正四面体(即四条棱均相等的三棱锥)的4个面上分别写有数字1,2,3,4,将3个这样大小相同、质地均匀的正四面体同时投掷于桌面上。记为与桌面接触的3个面上的3个数字中最大值与最小值之差的绝对值,则随机变量的期望等于
▲
。参考答案:16.以双曲线的右焦点为焦点的抛物线标准方程为___________.参考答案:17.已知点P(1,0)在圆x2+y2﹣4x+2y+5k=0的外部,则k的取值范围是.参考答案:(,1)【考点】圆的一般方程.
【专题】计算题;直线与圆.【分析】根据圆的标准方程的特征可得k<1,再根据点在圆的外部可得k>,综合可得实数k的取值范围.【解答】解:∵圆x2+y2﹣4x+2y+5k=0,即(x﹣2)2+(y+1)2=5﹣5k,∴5﹣5k>0,即k<1.∵点P(1,0)在圆x2+y2﹣4x+2y+5k=0的外部,∴12+02﹣4+5k>0,∴k>.综上可得,<k<1,故答案为:(,1).【点评】本题主要考查圆的标准方程、点和圆的位置关系,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分12分)用总长为14.8米的钢条制成一个长方体容器的框架,如果所制的容器的底面的长比宽多0.5米,那么高为多少时容器的容器最大?并求出它的最大容积.参考答案:高为1.2m时容器的容积最大,最大容积为1.8m3设容器底面宽为xm,则长为(x+0.5)m,高为(3.2-2x)m.由解得0<x<1.6,………………3分设容器的容积为ym3,则有y=x(x+0.5)(3.2-2x)=-2x3+2.2x2+1.6x,………………6分y′=-6x2+4.4x+1.6,令y′=0,即-6x2+4.4x+1.6=0,解得x=1,或x=-(舍去).………………8分∵0<x<1时,y′>0;1<x<1.6时,y′<0.∴在定义域(0,1.6)内x=1是唯一的极值点,且是极大值点,∴当x=1时,y取得最大值为1.8.………………10分此时容器的高为3.2-2=1.2m.因此,容器高为1.2m时容器的容积最大,最大容积为1.8m3.………………12分19.观察下列等式:;;;;,…………(1)猜想第个等式;(2)用数学归纳法证明你的猜想.参考答案:(1).(2)证明:(i)当时,等式显然成立.(ii)假设时等式成立,即,即.那么当时,左边,右边.所以当时,等式也成立.综上所述,等式对任意都成立.20.已知函数f(x)=x3﹣ax﹣1(a∈R)(I)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)在区间(﹣1,1)上单调递减,求实数a的取值范围.参考答案:【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(I)求出函数的导数,通过a的讨论,判断导函数的符号,推出函数f(x)的单调性;(Ⅱ)利用第一问的结果,利用单调性的子集关系推出结果即可.【解答】(本题满分12分)解:(I)f'(x)=3x2﹣a﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣若a≤0,f'(x)=3x2﹣a≥0,f(x)在R上单调递增﹣﹣﹣﹣﹣﹣﹣﹣﹣若函数f(x)的递减区间为,递增区间为﹣﹣﹣(II)由(1)知,函数f(x)在区间(﹣1,1)上单调递减,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.(本题满分12分)2009年一项关于16艘轮船的研究中,船的吨位区间位于192吨到3246吨,船员的人数从5人到32人,船员的人数关于船的吨位的回归分析得到如下结果:船员人数=9.1+0.006×吨位.(1)假定两艘轮船相差1000吨,船员平均人数相差是多少?(2)对于最小的船估计的船员数为多少?对于最大的船估计的船员数是多少?参考答案:22.设直线l的方程是x+my+2=0,圆O的方程是x2+y2=r2(r>0).(1)当m取一切实数时,直线l与圆O都有公共点,求r的取值范围;(2)r=5时,求直线l被圆O截得的弦长的取值范围;(3)当r=1时,设圆O与x轴相交于P、Q两点,M是圆O上异于P、Q的任意一点,直线PM交直线l′:x=3于点P′,直线QM交直线l′于点Q′.求证:以P′Q′为直径的圆C总经过定点,并求出定点坐标.参考答案:【考点】圆方程的综合应用.【分析】(1)只需直线所过的定点在圆内,即可使得m取一切值时,直线与圆都有公共点;(2)显然定点与圆心的连线垂直于直线时,弦长最短,直线过圆心时,弦长为直径最大.(3)由已知我们易求出P,Q两个点的坐标,设出M点的坐标,我们可以得到点P′与Q′的坐标(含参数),进而得到以P′Q′为直径的圆的方程,根据圆的方程即可判断结论.【解答】解:(1)直线l过定点(﹣2,0),当m取一切实数时,直线l与圆O都有公共点等价于点(﹣2,0)在圆O内或在圆O上,所以12+0≤r2,解得r≥2.所以r的取值范围是[2,+∞);(2)设坐标为(﹣2,0)的点为点A,则|OA|=2.则当直线l与OA垂直时,由垂径定理得直线l被圆O截得的弦长为l=2=2;当直线过圆心时,弦长最大,即x轴被圆O截得的弦长为2r=10;
所以直线l被圆O截得的弦长的取值范围是[2,10].(3)证明:对于圆O的方程x2+y2=1,令x=±1,即P(﹣1,0),Q(1,0).又直线l方程为x=3,设M(s,t),则直线PM方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 白盒测试的课程设计
- 白叶窗剪辑课程设计
- 2024年抗血小板药项目规划申请报告
- 病毒病防治课程设计
- 2024年甲基叔丁基醚项目提案报告模板
- 班级集体特色课程设计
- 2024年离合器助力器项目申请报告
- 玻纤布挂油封裂施工方案
- 玻璃钢结构研究报告
- 自走式停车楼建设项目可行性研究报告模板-备案拿地
- MOOC 设计原理与方法-东南大学 中国大学慕课答案
- WHT 78.4-2022 演出安全 第4部分:舞台音响安全-PDF解密
- 《勿忘国耻.强国有我》国家公祭日主题班会课件
- UML课程设计-网上购物系统
- 网络食品安全监管
- 围手术期管理规范
- 2022版义务教育(道德与法治)课程标准(附课标解读)
- 腰肌劳损知识课件
- 2024年公安机关人民警察高级执法资格考试试卷含答案(案例分析题 论述题)
- Unit8WXYZ(课件)牛津自然拼读Level1
- (高清版)DZT 0341-2020 矿产地质勘查规范 建筑用石料类
评论
0/150
提交评论