




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
作课类别课题配方法(1)课型新授教学媒体多媒体教学目标知识技能1.理解一元二次方程“降次”的转化思想.2.根据平方根的意义解形如x2=p(p≥0)的一元二次方程,然后迁移到解(mx+n)2=p(p≥0)型的一元二次方程.3.把一般形式的一元二次方程(二次项系数是1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握.过程方法通过根据实际问题列方程,向学生渗透知识来源于生活.通过观察,思考,对比获得一元二次方程的解法-----直接开平方法,配方法情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.教学重点1.运用开平方法解形如(mx+n)2=p(p≥0)的方程;领会降次──转化的数学思想.2用配方法解二次项是1,一次项系数是偶数的一元二次方程教学难点降次思想,配方法教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语:已经学习了一元二次方程的概念,本节课开始学习其解法,首先学习直接开平方法,配方法.二、探究新知探究课本问题1分析:1.用列方程方法解题的等量关系是什么?2.解方程的依据是什么?3.方程的解是什么?问题的答案是什么?4.该方程的结构是怎样的?归纳:可根据数的开方的知识解形如x2=p(p≥0)的一元二次方程,方程有两个根,但是不一定都是实际问题的解.解决课本思考1如何理解降次?2本题中的一元二次方程是通过什么方法降次的?3能化为(x+m)2=n(n≥0)的形式的方程需要具备什么特点?归纳:1运用平方根知识将形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程降次,转化为两个一元一次方程,解一元一次方程即可;2左边是含有未知数的完全平方式,右边是非负常数的一元二次方程可化为(x+m)2=n(n≥0).探究课本问题21.根据题意列方程并整理成一般形式.2.将方程x2+6x-16=0和x2+6x+9=2对比,怎样将方程x2+6x-16=0化为像x2+6x+9=2一样,左边是含有未知数的完全平方式,右边是非负常数的方程?eq\o\ac(○,1)完成填空:x2+6x+=(x+)2eq\o\ac(○,2)方程移项之后,两边应加什么数,可将左边配成完全平方式?归纳:用配方法解二次项系数是1且一次项系数是偶数的一元二次方程的一般步骤及注意事项:先将常数项移到方程右边,然后给方程两边都加上一次项系数的一半的平方,使左边配成完全平方式的三项式形式,再将左边写成平方形式,右边完成有理数加法运算,到此,方程变形为(x+m)2=n(n≥0)的形式.三、课堂训练课本练习:32页练习,34页练习1,2(1)四、小结归纳1.根据平方根的意义,用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程.2.用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,特别地,移项后方程两边同加一次项系数的一半的平方.3.在用方程解决实际问题时,方程的根一定全实际是问题的解,但是实际问题的解一定是方程的根.五、作业设计复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做;学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重复练习.补充作业:1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2B.p=4,q=-2C.p=-4,q=2D.p=-4,q=-24.方程3x2+9=0的根为().A.3B.-3C.±3D.无实数根5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31B.x2-8x+(-4)2=1C.x2+8x+42=1D.x2-4x+4=-116.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?点题,板书课题.学生读题找等量关系列方程,思考解方程的依据.学生观察所列方程特点,辨析方程的解与问题的答案.学生尝试描述何为降次及方法,把握方程结构特点,初步体会直接开平方法解一元二次方程.教师组织学生讨论,尝试回答,教师及时肯定并总结学生审读并列方程组织学生讨论,交流然后师生总结学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正师生归纳总结,学生作笔记.开门见山明确本节课内容淡化列方程难度,重点突出解方程方法,关注方程的解,以及方程的解要受到实际问题的检验,作出取舍.理解降次,初步感知方程结构特点,更好把握直接开平方法,并为配方法的学习作铺垫感知一元二次方程的实际应用在比较中发现配方法的实质总结成文,为熟练运用作准备使学生巩固提高纳入知识系统板书设计课题问题1直接开平方法问题2配方法归纳教学反思作课类别课题配方法(2)课型新授教学媒体多媒体教学目标知识技能1.进一步理解配方法和配方的目的.2.掌握运用配方法解一元二次方程的步骤.3.会利用配方法熟练灵活地解二次项系数不是1的一元二次方程.过程方法通过对比用配方法解二次项系数是1的一元二次方程,解二次项系数不是1的一元二次方程,经历从简单到复杂的过程,对配方法全面认识.情感态度通过对配方法的探究活动,培养学生勇于探索的学习精神.感受数学的严谨性和数学结论的确定性.温故知新,培养学生利用旧知解决问题的能力.教学重点用配方法解一元二次方程教学难点用配方法解二次项系数不是1的一元二次方程,首先方程两边都除以二次项系数,将方程化为二次项系数是1的类型.教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语:我们在上节课,已经学习了用直接开平方法解形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程,以及用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,这节课继续学习配方法解一元二次方程.二、探究新知1.填空:eq\o\ac(○,1)eq\o\ac(○,2)eq\o\ac(○,3)eq\o\ac(○,4)2.填空:eq\o\ac(○,1)=eq\o\ac(○,2)3.解下列方程:eq\o\ac(○,1)x2-8x+7=0eq\o\ac(○,2)2x2+8x-2=0eq\o\ac(○,3)2x2+1=3xeq\o\ac(○,4)3x2-6x+4=0题目设置说明:1.eq\o\ac(○,1)与上节课衔接(二次项系数为1)2.eq\o\ac(○,2)至eq\o\ac(○,4)二次项系数不为1.二次项系数化为1后,eq\o\ac(○,2)的一次项系数为偶数.为后面做铺垫.eq\o\ac(○,3)的一次项系数为分数,eq\o\ac(○,4)无解.分析:(1)解方程eq\o\ac(○,1),复习用配方法解二次项系数为1的一元二次方程步骤;(2)对比eq\o\ac(○,1)的解法得到方程eq\o\ac(○,2)的解法,总结出用配方法解二次项系数不为1的一元二次方程的一般步骤:1.把常数项移到方程右边;2.方程两边同除以二次项系数,化二次项系数为1;3.方程两边都加上一次项系数一半的平方;4.原方程变形为(x+m)2=n的形式;5.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.(3)运用总结的配方法步骤解方程eq\o\ac(○,3),先观察将其变形,即将一次项移到方程的左边,常数项移到方程的右边;解方程eq\o\ac(○,4)配方后右边是负数,确定原方程无解.(4)不写出完整的解方程过程,到哪一步就可以确定方程的解得情况?三、课堂训练1.方程()A.B.C.D.2.配方法解方程2x2-x-2=0应把它先变形为().A.(x-)2=B.(x-)2=0C.(x-)2=D.(x-)2=3.下列方程中,一定有实数解的是().A.x2+1=0B.(2x+1)2=0C.(2x+1)2+3=0D.(x-a)2=a4.解决课本练习2(2)到(6)5.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1B.2C.-1D.-26.,,是的三条边eq\o\ac(○,1)当时,试判断的形状.eq\o\ac(○,2)证明四、小结归纳用配方法解一元二次方程的步骤:1.把原方程化为的形式,2.把常数项移到方程右边;3.方程两边同除以二次项系数,化二次项系数为1;4.方程两边都加上一次项系数一半的平方;5.原方程变形为(x+m)2=n的形式;6.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.不写出完整的解方程过程,原方程变形为(x+m)2=n的形式后,若n为0,原方程有两个相等的实数根;若n为正数,原方程有两个不相等的实数根;若n为负数,则原方程无实数根.五、作业设计复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做;学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重复练习.补充作业:本课无点题,板书课题.让学生独立完成eq\o\ac(○,1),复习巩固上节课内容.通过对比方程eq\o\ac(○,1)eq\o\ac(○,2)结构,尝试解方程eq\o\ac(○,2),探讨二次项系数不是1的一元二次方程的解法,教师组织学生讨论,师生交流看法,肯定其可行性,总结出一般步骤.让学生运用总结出的一般步骤解方程eq\o\ac(○,3)eq\o\ac(○,4),其中eq\o\ac(○,3)需要先整理,eq\o\ac(○,4)无解.根据上述方程的根的情况,学生思考并叙述学生先自主,再合作交流,总结经验,完成.教师巡视指导,了解学生掌握情况,对于好的做法,加以鼓励表扬.并集体进行交流评价,体会方法,形成规律.学生归纳,总结阐述,体会,反思.并做出笔记.回顾上节课内容以得以衔接复习完全平方式的,为下面用配方法解方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省邯郸市六校2025届高三下第一次测试化学试题含解析
- 2025届四川宜宾市高三最后一模化学试题含解析
- 甘肃省广河县三甲集中学2025届高考压轴卷化学试卷含解析
- 2025年摩托车主副轴组件项目建议书
- 浙江省十校联盟2025届高考化学必刷试卷含解析
- 床旁血液净化技术的护理
- 小学生安全教育校本教材
- 青海省海南州2025届高三压轴卷化学试卷含解析
- 江苏省南通市如东县马塘中学2025届高考仿真卷化学试题含解析
- 湖北省巴东三中2025年高三二诊模拟考试化学试卷含解析
- 2025年江苏省高职单招《职测》高频必练考试题库400题(含答案)
- 小学语文四年级下册 第四单元 单元作业设计“作家笔下的动物”
- 桥梁检测报告模板
- 《计算机网络基础》课件-OSI参考模型
- 物业礼仪着装培训
- 2025年浪潮数字企业技术有限公司招聘笔试参考题库含答案解析
- 课时精讲14-物质的聚集状态与晶体的常识(学生版)
- 草地植物多样性沿海拔梯度分布特征及其驱动因素
- 偏瘫患者更换衣物护理
- 探索肠道菌群对免疫系统影响机制
- 2025年农业农村部科技发展中心面向社会公开招聘2人管理单位笔试遴选500模拟题附带答案详解
评论
0/150
提交评论