版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
题型三方程应用类型三二次方程(专题训练)1.(2022·重庆)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【分析】第一年共植树400棵,第二年植树400(1+x)棵,第三年植树400(1+x)²棵,再根据题意列出方程即可.【详解】第一年植树为400棵,第二年植树为400(1+x)棵,第三年400(1+x)²棵,根据题意列出方程:SKIPIF1<0.故选:B.【点睛】本题考查了一元二次方程的应用,属于增长率的常规应用题,解决此类题目要多理解、练习增长率相关问题.2.(2022·重庆)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为SKIPIF1<0,根据题意,下面所列方程正确的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】平均增长率为x,关系式为:第三天揽件量=第一天揽件量×(1+平均增长率)2,把相关数值代入即可.【详解】解:由题意得:第一天揽件200件,第三天揽件242件,∴可列方程为:SKIPIF1<0,故选:A.【点睛】此题考查一元二次方程的应用,得到三天的揽件量关系式是解决本题的突破点,难度一般.3.(2022·新疆)临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x,则根据题意,可列方程为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】设这两个月销售额的月平均增长率为x,则第二个月的销售额是SKIPIF1<0万元,第三个月的销售额为SKIPIF1<0万元,即可得.【详解】解:设这两个月销售额的月平均增长率为x,则第二个月的销售额是SKIPIF1<0万元,第三个月的销售额为SKIPIF1<0万元,∴SKIPIF1<0故选C.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是能够求出第二个月的销售额和第三个月的销售额.4.(2022·山东泰安)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【分析】设这批椽的数量为x株,则一株椽的价钱为3(x−1)文,利用总价=单价×数量,即可得出关于x的一元二次方程,此题得解.【详解】解:∵这批椽的数量为x株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x−1)文,依题意得:3(x−1)x=6210,故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.(2021·黑龙江鹤岗市·中考真题)有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是()A.14 B.11 C.10 D.9【答案】B【分析】设每轮传染中平均一个人传染了x个人,由题意可得SKIPIF1<0,然后求解即可.【详解】解:设每轮传染中平均一个人传染了x个人,由题意可得:SKIPIF1<0,解得:SKIPIF1<0(舍去),故选B.【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.6.(2021·内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x,则可列方程为()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根据题意,业务量由507亿件增加到833.6亿件,2020年快递业务量为833.6亿件,逐年分析即可列出方程.【详解】设从2018年到2020年快递业务量的年平均增长率为x,2018年我国快递业务量为:507亿件,2019年我国快递业务量为:SKIPIF1<0=SKIPIF1<0亿件,2020年我国快递业务量为:SKIPIF1<0+SKIPIF1<0,根据题意,得:SKIPIF1<0故选C.【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程.7.(2021·福建中考真题)某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x,那么,符合题意的方程是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】设年平均增长率为x,根据2020年底森林覆盖率=2018年底森林覆盖率乘SKIPIF1<0,据此即可列方程求解.【详解】解:设年平均增长率为x,由题意得:SKIPIF1<0,故选:B.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,列出方程即可.8.(2021·湖北襄阳市·中考真题)随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为SKIPIF1<0,下面所列方程正确的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可.【详解】设这种药品的成本的年平均下降率为x,根据题意得:SKIPIF1<0故选:C.【点睛】本题考查一元二次方程的应用,解题的关键是能从题意中找到对应的等量关系.9.(2020·广西河池?中考真题)某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A.6 B.7 C.8 D.9【答案】D【解析】【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x队,根据题意得:SKIPIF1<0x(x﹣1)=36,化简,得x2﹣x﹣72=0,解得x1=9,x2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.10.(2022·浙江杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(SKIPIF1<0),则SKIPIF1<0_________(用百分数表示).【答案】30%【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x的一元二次方程,解方程即可.【详解】解:设新注册用户数的年平均增长率为x(SKIPIF1<0),则2020年新注册用户数为100(1+x)万,2021年的新注册用户数为100(1+x)2万户,依题意得100(1+x)2=169,解得:x1=0.3,x2=-2.3(不合题意舍去),∴x=0.3=30%,故答案为:30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.11.(2021·江苏盐城市·中考真题)劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为SKIPIF1<0,则可列方程为________.【答案】SKIPIF1<0【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程.【详解】解:设平均每年增产的百分率为x;第一年粮食的产量为:300(1+x);第二年粮食的产量为:300(1+x)(1+x)=300(1+x)2;依题意,可列方程:300(1+x)2=363;故答案为:300(1+x)2=363.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.12.(2021·四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程__________.【答案】SKIPIF1<0【分析】根据题意,第一季度地区生产总值SKIPIF1<0平均增长率SKIPIF1<0第三季度地区生产总值,按照数量关系列方程即可得解.【详解】解:根据题意,第一季度地区生产总值SKIPIF1<0平均增长率SKIPIF1<0第三季度地区生产总值列方程得:SKIPIF1<0,故答案为:SKIPIF1<0.【点睛】本题主要考查了增长率的实际问题,熟练掌握相关基本等量关系是解决本题的关键.13.(2021·山东枣庄市·中考真题)若等腰三角形的一边长是4,另两边的长是关于SKIPIF1<0的方程SKIPIF1<0的两个根,则SKIPIF1<0的值为______.【答案】8或9【分析】分4为等腰三角形的腰长和4为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得.【详解】解:由题意,分以下两种情况:(1)当4为等腰三角形的腰长时,则4是关于SKIPIF1<0的方程SKIPIF1<0的一个根,因此有SKIPIF1<0,解得SKIPIF1<0,则方程为SKIPIF1<0,解得另一个根为SKIPIF1<0,此时等腰三角形的三边长分别为SKIPIF1<0,满足三角形的三边关系定理;(2)当4为等腰三角形的底边长时,则关于SKIPIF1<0的方程SKIPIF1<0有两个相等的实数根,因此,根的判别式SKIPIF1<0,解得SKIPIF1<0,则方程为SKIPIF1<0,解得方程的根为SKIPIF1<0,此时等腰三角形的三边长分别为SKIPIF1<0,满足三角形的三边关系定理;综上,SKIPIF1<0的值为8或9,故答案为:8或9.【点睛】本题考查了一元二次方程根的定义、根的判别式、等腰三角形的定义等知识点,正确分两种情况讨论是解题关键.需注意的是,要检验三边长是否满足三角形的三边关系定理.14.(2022·四川眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【答案】(1)20%(2)18个【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为SKIPIF1<0,根据2019年投入资金SKIPIF1<02021年投入的总资金,列出方程求解即可;(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.【解析】(1)解:设该市改造老旧小区投入资金的年平均增长率为SKIPIF1<0,根据题意得:SKIPIF1<0,解这个方程得,SKIPIF1<0,SKIPIF1<0,经检验,SKIPIF1<0符合本题要求.答:该市改造老旧小区投入资金的年平均增长率为20%.(2)设该市在2022年可以改造SKIPIF1<0个老旧小区,由题意得:SKIPIF1<0,解得SKIPIF1<0.∵SKIPIF1<0为正整数,∴最多可以改造18个小区.答:该市在2022年最多可以改造18个老旧小区.【点睛】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式.15.(2022·湖北宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加SKIPIF1<0.5月份每吨再生纸的利润比上月增加SKIPIF1<0,则5月份再生纸项目月利润达到66万元.求SKIPIF1<0的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了SKIPIF1<0.求6月份每吨再生纸的利润是多少元?【答案】(1)4月份再生纸的产量为500吨(2)SKIPIF1<0的值20(3)6月份每吨再生纸的利润是1500元【分析】(1)设3月份再生纸产量为SKIPIF1<0吨,则4月份的再生纸产量为SKIPIF1<0吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可;(2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;(3)设4至6月每吨再生纸利润的月平均增长率为SKIPIF1<0,5月份再生纸的产量为SKIPIF1<0吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;【解析】(1)解:设3月份再生纸产量为SKIPIF1<0吨,则4月份的再生纸产量为SKIPIF1<0吨,由题意得:SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,答:4月份再生纸的产量为500吨;(2)解:由题意得:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(不合题意,舍去)∴SKIPIF1<0,∴SKIPIF1<0的值20;(3)解:设4至6月每吨再生纸利润的月平均增长率为SKIPIF1<0,5月份再生纸的产量为SKIPIF1<0吨,SKIPIF1<0∴SKIPIF1<0答:6月份每吨再生纸的利润是1500元.【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.16.(2021·湖南张家界市·中考真题)2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少?【答案】(1)10%;(2)13.31万【分析】(1)设这两个月参观人数的月平均增长率为SKIPIF1<0,根据题意列出等式解出SKIPIF1<0即可;(2)直接利用(1)中求出的月平均增长率计算即可.【详解】(1)解:设这两个月参观人数的月平均增长率为SKIPIF1<0,由题意得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0(不合题意,舍去),答:这两个月参观人数的月平均增长率为SKIPIF1<0.(2)SKIPIF1<0(万人),答:六月份的参观人数为13.31万人.【点睛】本题考查了二次函数和增长率问题,解题的关键是:根据题目条件列出等式,求出增长率,再利用增长率来预测.17.(2021·山东东营市·中考真题)“杂交水稻之父”——袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水箱亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.【答案】(1)20%;(2)能【分析】(1)设亩产量的平均增长率为x,依题意列出关于x的一元二次方程,求解即可;(2)根据(1)求出的平均增长率计算第四阶段亩产量即可.【详解】解:(1)设亩产量的平均增长率为x,根据题意得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0(舍去),答:亩产量的平均增长率为20%.(2)第四阶段的亩产量为SKIPIF1<0(公斤),∵SKIPIF1<0,∴他们的目标可以实现.【点睛】本题主要考查由实际问题抽象出一元二次方程,掌握2次变化的关系式是解决本题的关键.18.(2021·辽宁本溪市·中考真题)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【分析】(1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;(2)根据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;(3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题.【详解】(1)由题意可得,y=100-2(x-60)=-2x+220;(2)由题意可得,(-2x+220)(x-40)=2400,解得,SKIPIF1<0,SKIPIF1<0,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w元,由题意可得w=(-2x+220)(x-40)=SKIPIF1<0,当SKIPIF1<0时,w有最大值,最大值为2450,∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【点睛】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题.19.(2020·重庆中考真题)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A、B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收人将增加SKIPIF1<0,求a的值.【答案】(1)A品种去年平均亩产量是400、B品种去年平均亩产量是500千克;(2)10.【解析】【分析】(1)设A、B两个品种去年平均亩产量分别是x、y千克,根据题意列出方程组,解方程组即可得到答案;(2)根据题意分别表示A品种、B品种今年的收入,利用总收入等于A品种、B品种今年的收入之和,列出一元二次方程求解即可得到答案.【详解】(1)设A、B两个品种去年平均亩产量分别是x、y千克,由题意得SKIPIF1<0,解得SKIPIF1<0.答:A.B两个品种去年平均亩产量分别是400、500千克(2)根据题意得:SKIPIF1<0.令a%=m,则方程化为:SKIPIF1<0.整理得10m2-m=0,解得:m1=0(不合题意,舍去),m2=0.1所以a%=0.1,所以a=10,答:a的值为10.【点睛】本题考查的是二元一次方程组的应用,一元二次方程的应用,掌握列方程或方程组解应用题的方法与步骤是解题的关键.20.(2020·江苏宿迁?中考真题)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55606570销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 健身服务销售工作总结
- 教育培训机构服务员工作总结
- 2024圆通速递快递服务合同快递网络建设及升级合同3篇
- 化妆品行业安全管理工作总结
- 2024年度房产代理买卖合同(含车位、装修、家具、家电、税费、贷款及保险)3篇
- 体育用品行业业务员工作总结
- 农业行业农业经验分享
- 美容护理技术心得分享
- 语文高考押题专题三:文学常识与名句默写
- 爆破课程设计孔网参数图
- 我和我的祖国拼音版
- 护理穴位贴敷课件
- 胎元、命宫、身宫的推算
- 高速公路改扩建中的保通设计分析
- 美人蕉锈病病情调查报告
- 手工钨极氩弧焊焊接工艺指导书
- 分级护理细化标准[资料]
- 板式换热器计算
- 最新大学毛概期末考试重点总结
- 事故隐患排查治理统计分析制度
- 供应商供方履约评价表(参考模板)
评论
0/150
提交评论