课件mth017数学系线性代数algebra6rank_第1页
课件mth017数学系线性代数algebra6rank_第2页
课件mth017数学系线性代数algebra6rank_第3页
课件mth017数学系线性代数algebra6rank_第4页
课件mth017数学系线性代数algebra6rank_第5页
已阅读5页,还剩76页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Algebra6:TheRankofTheRankodMatrix矩阵的秩,是矩阵 概念之一性方程组的研究中,矩阵“秩”这个概念有关键作用为此,首先介绍矩阵的子(行列)式和代 式的概念

矩阵的子(行列)式

A=

a22a2n

k行、k an1a22amn

kk阶子式 -3

A=

-5

det

-3

取第1、3和4行,第2、4和5 得到三阶子方阵和3 A=

-5

det

2 Therankofa

A=

2 an1a22amnAk阶子方阵是可逆矩阵。k+1阶以上的子方阵都是不可逆的,A的秩(rank)k.Ak阶子行列式不等于零,但所有k+1阶以上的子行列式都等于零。则矩阵的秩等于k:

1 9 A=

B=

r(B)=1 0r(A)=

C= 1

=2„

0

00112 2=00112

1=

1= 0r(C)=

0

-3

A= -5

=-14„

Thereexistsasub-determinantoforder4thatisnonzero.SothattherankofAisgreaterthanorequalto4.Intheotherhand,thedimensionofthismatrix is4â5.Sothat,therankofAnotgreaterthan4.ThereforetherankofAequals一个4行5列的矩阵,它的秩不会超过ThepropertiesofrankofLetAbeamatrixofdimensionmân,r(A)£

12

A=

22

r(B)

a25

B=

In

r(A)£r(A)£min{m,

42 Ifr(A)=m,thenthematrixiscalledrowfullrank(行满秩):Ifr(A)=nthenthematrixiscalledrowcolumnrank(列满秩)r(AT)=r(nnThenecessaryandsufficientconditionfortheinvertibilityofmatrixAisdet(A)π0.初等变换不改变矩阵的秩r(AB)£min{r(任意梯形矩阵的秩,等于它的非零行数2020122100000000000000000A=000

,r(A)=B=

r(B)3

就是该矩阵的秩 对矩阵AEshelonExample:Findtherankoffollowing0010011111111110011001fi00A=00

- -

11

00

11

r

r1)fi

r(A)=

Example:FindtherankofmatrixA r12(-

r(-1)fi

- 4A=

r(-

- 4

7

- 4 0 0

r(A)=a11x1+a12

++a1nxn= x+ x++ 21 Matrixof

++amnxn=augmented

b1 bA=

A=

2

b m mn

m mDoesthesystemhaveHowmanysolutionsdothesystemWhataretheformulaofthegenerala11x1+a12

++a1nxn= x+

x++ =

21 Linear

++amnxn=①Thesystemhasnontrivialsolutionsifandonlyifr(A)<n②Supposethatr(A)<n,thentherearek=n-r(A)arbitraryconstantsintheformulaofgeneralsolutionsofthehomogeneoussystems.③Therearek=n-r(A)linearindependentvectorsinthesystemoffoundationalsolutions.方程通解表达式中含有k=n-r(A)基本解系中有k=n-r(A)Example:Solvethehomogeneouslinear x12x24x3+x4 2x+ +8x =

MatrixofA

r(-

1 fi

0r23

0rA)2n4有非平凡解k=n-r(A)=2个向量 x1+2x2+4x3+x4=

1 2x+ +8x+ = 系数矩阵 =

0r(1

-1/

x+2x- x= fi 3/

x1=-2x2+5

1 x+ x+

x4=

=-1x -2t+1t

1 52

5x2= x2= 5

=t1+t0

=t+t x

-1

10

2-1

4=

3

10

10x4

0 1

基础解系v1,Example:Solvethe x1+2x2+ 3x+

3 2x+5x+

Matrixof

A= 7 x1+

+4x3=

4 3

r(-

1

r(-1)fi

7 r(-1)

4

x1 =2 x 3 Examplex+

x0l (x,x,x)T=(0, matrixofl l1=l

1- 1+

l1时方程组有非零解l=1x1+x2+x3=

x+x+x=

-

+x3=

11 x1+x2+x3

x1+x2=-

4x=-

x3=

x1=-

x2=-2x

1 1- 3 2 2- 3

1

=

-t

=t-

=t3

=t

3=v 2x

2 2

3

1 齐次方程组定理的合理解释(用例题解释a11x1+a12x2+a13x3+a14

+a15x5= x+ x+ x+ x+ x=

a12a1521

a31x1+a32x2+a33x3+a34

+a35x5=

25 x+ x+ x+ x+ x=

41 x+ x+ x+

+a55x5=

51

+a64

+a65x5=若r(A)=3<

c15

x+

+cx+

x+ x=

25

11

c25 c

c22

+

+c25x5= 0

c33x3+c34x4+c35x5=0 0

0 0x4x5c11x1+c12

+c13x3=-c14x4-

+c23

- 于是方程组有无穷多组解.t1和t2 c15 25

c45

55 0

x+ x+cx+ x+cx=

11

c22

+c23x3+c24

+c25x5=

+c35x5= c44

+c45x5=c55x5=Non-HomogeneousLineara11x1+a12

++a1nxn=

x1

b1x x+ x++ =x

x

b21

2

b= 2Ax=

++amnxn=

xn

bmDoesthesystemhaveHowmanysolutionsdothesystemWhataretheformulaofthegeneralMatrixof Augmented

b1

b2A= 2n

A=

mnThesystemisconsistentifandonlyifr(A)=r(Thesystemhasuniquesolutionifandonlyifr(A)=r(A)=Thesystemhasinfinitesolutionsifandonlyifr(A)=r(A)<Thegeneralsolutioncontaink=n-r(A)arbitrary(1)线性方程组相容的充分必要条件是r(A)=r(A).(2)线性方程组有惟一解的充分必要条件是rA)rA)n.(3)rA)rAn.例3x1-7x2+14x3-8x4= x-4x+3x

x-3x+4x-

2x1-15x2-x3+

判断系数矩阵和增广矩阵的秩的关系将方程组化为等价方程组,方便求解3424r-2 34455 fi22 33

-2 2 2

244

0 00 0

306系列变换00

r(A)=r(A)=2<60600Thesystemoflinerequationsis33

-2 2 2

244

0 00 0

30600系列变 00

66000

r(A)=r(A)=2<Thesystemoflinerequationsis06 06

000 00Thesystemoflinerequationsx1-4x2+3x3-x4=- x1-4x2=-3x3+x4-xxxx2+

-x4=

2=6-

+

=

,

x1-4x2=-3t12x =6-t+t

+

-2x1=22-7t1+ =6-t+= =

x 6 2= -t+tx3 0 1 2 0 x4 0 Thegeneralsolutionofthelinear

x 6

2=

=x+tv+v 0

10

2

1 x 0 0 4

6

,v2=0 0 t1v1+t2v2isthegeneralsolutionofthehomogeneousandxisaparticularsolution.ofthenonhomogeneousa11x1+a12x2+a13x3+a14

+a15x5= x+ x+ x+ x+ x=21 a31x1+a32

+a33x3+a34x4+a35x5= x+ x+

x+

x+

=41

51

+a52

+a53x3+a54x4+a55x5=

+a63x3+a64x4+a65x5= a12a15

b1

b

a22a25

2

a61a62a65

6rA)rA3 aaa 2 00000000000000000

0 0 0a11x1+a12

+a13x3+a14x4+a15x5= ax+ax+ax+ax= a 33x3+a34x4+a35x5=ax5x6移至等式右端作为自由变量a11x1+a12

+a13x3=b1-a14x4-a15aa 22

+a23x3=b2-a24x4-a25 a33x3=b3-a34x4-a35x5t1x6a11x1+a12

+a13x3=b1-a14t1-aa 22

+a23x3=b2-a24t1-a a

=b-at-a

34

35继续求解,通解表达式中含有5-3=2个任意常数rA)rA) aaa 2

a 4

0 5个方程,5rA)4,rA) aaa b 2

b 4 00 00a11x1+a12

+a13x3+a14x4+a15x5= a22x2+a23x3+a24x4+a25x5= a33

+a34x4+a35x5= 0x1+0x2+0x3+0x4+0x5=r(A)<r(A)Theremustbeequationwhichis3x1-7x2+14x3-8x4= x-4x+3x

x-3x+4x-

2x1-15x2-x3+

33-224

24

4 4

33

-2 2 2

244

0 00 0

30600系列变 00

66000

r(A)=r(A)=2<Thesystemoflinerequationsis06 06

000 00Thesystemoflinerequationsx1-4x2+3x3-x4=- x1-4x2=-3x3+x4-xx 2+

-x4=

=6-x+

=

,

x1-4x2=-3t12x =6-t+t

+

-2x1=22-7t1+ =6-t+= =

x 6 2= -t+tx3 0 1 2 0 x4 0 Thegeneralsolutionofthelinear

x 6

2= -

=x+tv+vx 0 2

1 3 x4 0 6 wherex=

,v1=,v2=0

2x1-3x2+6x3-5x4=

x2-

+x4=1

A=

k-r(-1)fi

k= r(A)=r(

k-当k=7660111fi11000000

Afi

fi00

11

x1-3x3-x4=

x1=3x3+x4+xxx3=t1,x4=

-

+x4

= - x

4t-t

1 2=

=t+t

+

1

20 xt xt4

即nndimensionv1 u1

v1+u1

v u lv

+u v=2,u=2,lv= 2,u+v=

2,q= v u lv

+u

n n n n 向量的加法(addition)和数乘(scalarmultiplication),(LinearSpace)

是一组n维向量,k,k ab=ka+ a a,a

的一个线性组合(linear如果向量b等于a1,a2,,am b可以由a1,a2,,am线性表示

-

5

=

=2

b=

-

=21-32 1,

=-

2

-6

0 2 ba1a2Example:Inthevectorspaceofn

e1= ,111 1 b1b Theneachvectorb=2inRn,theequation b bnb1 1 b 1

2=b +b ++b

b=be+be+b 1 2 n

1 b 1n

IfVisanonemptysubsetofRnthatsatisfiestheax˛Vwheneverx˛Vforanyscalarx+y˛Vwheneverx˛Vandy˛VThenVisasubspaceofRn什么是子空间设VR3中xOy平面上所有向量组成的集合,是R3的一个二维子空间。LR3中经过原点的一条直线,LR3LetC[a,b]denotthesetofallreal-valuedcontinuousfunctionson[a,b]:(f+g)(x)=f(x)+g(x),(af)(x)=af(ThenC[a,b]isavectorThesetofallpolynomialsisasubspaceofC[a,ThesetofalldifferentiablefunctionsisasuubspaceofLetv1,v2,,vmbevectorsinavectorspaceVAsuma1v1+a2v2++amvm,wherea1,a2,,amarescalars,iscalledalinearcombinnationofv1,v2,,vm.Thesetofalllinrarconbinationsofv1,v2,,vmiscalledthespanofv1,v2,,vm,thatdenotedbyspan(v1,v2,,vm).Thesetspan(v1,v2,,vm)isasubspaceofVThenullspaceofamatrixandthesolutionsofhomogenouslinearsystem

x1

a12a1n x+ x++

21

x=x2

a22a2n

x+ x++

n1

n

xn

an1an2anna11 a12

a1n

x 21+x

22++x

2n= 1 2

n

n1 n2 xa+xa++xa a11x1+a12

++a1mxm= x+ x++ =21

++anmxm=

y1x yx=2,y=2

x xnIfxandyaresolitionsofthehomogeneouethenax+byiealsosolutionofthissystem.(Inwhich,aandbarearbitraryscalars)

yny齐次线性方程组的解集合,就是系数矩阵的零空间(NullN(A)={x˛Rn|Ax=x= 平凡解(trivial

=00这个解空间完全由系数矩阵AN(A).N(A)是所有满足Ax=0的那些向量组成的集合.A的零空间.Linear(向量集的线性无关性Lineardependence(线性相关 或者成倍数关系:b=aaora=bb三个向量a和b c=aa+bb在 Rn中,称向量集{v,v,,v}线性相关 vm=a1v1+a2v2++am-1vm-Example: e=0, =1,e=

Thesetofvectorsislinear

Example:

3

Thissetofvectorsis

c=a-a=1,b=2,c=-

Example:在 e=,e=,,e=

Thesetofvectorsislinearindependent. Definition:Lineardependence(线性相关Thevectorsv1,v2,,vminavectorspaceVaresaidtolinearlydependentiftherearenontrialchoicesofscalarsforwhichthelinearcombination 在n Rn中,称向量集{v,v,,v} Thesesimpleconceptsprovidethekeytounderstandingthestructureofvectorspaces.DefinitionLinearindependence(线性无关如果它不是线性相关,则称它们是线性无关{v1v2,vm}是指其中任何一个向量都不能由其它向量线性表示Therigorousdefinitionoflinearlyindependence:Thevectorsv1,v2,,vminavectorspaceVaresaidtobeallthescalarsc1,c2,,cmmustequal0.因为方 矩阵和线性方程组的工具研究向量集的有关问题如何判断线性相关,还是线性无关a11 a12 a1n x 21+x

22++x

2n=

1 2

n

n1 n2 nn xa+xa++x = 又转化为系数矩阵的求秩(rank)Proposition1:Thenecessaryandsufficientconditionforthelinearlydependentisthelinearsystemhasnontrivialsolutions.Proposition2:Thenecessaryandsufficientconditionforthelinearlydependentisthattherankofthecoefficientmatrixlessthann.Key{v1v2,,vm}线性相关的充分必要条件是x1v1+x2v2++xmvm=将向量v1,v2,, 按列排成n·m矩阵VV vmVx1v1+x2v2++xmvm={v1v2,vm}r(V{v1v2,vm}r(VDeterminewhetherornotthesetofvectorsis a1=(1,1,1),a2

=

,a3

A= Convertitintoaechelon

0 fi

0r(-1),r(-1)fi

0 0 R(A)=3,所以这个向量集线性无关 Determinewhetherornotthatthesetofvectorsislinearlydependent. a T,a= T,a=

3

3

10

19

~

~

1

1

3 3 ~ ~

raaa= 19

1 0

Thereforethissetofvectorsislinearly a(1,11)Ta(025)Ta(13 解 A= r(-

fi

rA)23fi线性相关Supposethatthesetofvectors{,

}islinearly

aa 1 aLetb1=a1+a2,b2=a2+a3,b3=a1+a3 Showthat{b1,b1,b3}arealsolinear Onthecontrary,wesupposethat{b1,b2,b3}arelinearelythenthereexistconstantsk1,k2andk3thatisnottrivialsuch That k(

)+k(

)+k(+)=0.1a

a2 2a a3 3a (k1+k3)a1+(k1+k2)a2+(k2+k3)a3=0.(k+k)a+(k+k

k1+k3=0,k1+k2=0,k2+k3=0.k1+k3=Thuswehavethelinearsystem k1+k2=0k+k= Thecoefficient

=2„Thislinearsystemhasonlytrivialk1=k2=k3=0. Thus,{b1,b2,b3}arelinearely什么是齐次线性方程组的基础解系(基本解组)

x+ x++ 21

假设下列m,a ,,,a 如果这m这组向量向量是线性无关的Systemofsolutions).Example:Solvethelinear x1+2x2+4x3+x4=2x+4x+8x+ = 3x+6x+ = Solution:

r(-

1 fi 0 r(-

-1 1

5 r(-

3r23

10fi 10

0r21(-4) 00 00 Example:Solvethelinear x1+2x2+4x3+x4=2x+4x+8x+ = 3x+6x+ = Solution:

r(-

1 fi 0 r(-

-1 1

5 r(-

3r23

10fi 10

0r21(-4) 00 00 x1+2x2+4x3+x4=

112x+4x+8x+ =

3

Afi

+ =

0 0

1000

x=- +1x1+2x2-5x4=

fi x3x3x+

x=

=-

Letx2=t1,x4=t2

x=-2t+1 5Thesolutionsofthesystemis

= 10 x=-2t+1

5

=

a=1,b=

0

3t =t 10

-

Thesystemofx=x=

x 1

2=t +t

xtat x 10

2 3 3 x4 0

-

Theconstantst1andt2canbearbitrary x1+2x2+3x3-x4= x+ +4x+ Example: 2x+ +6x+ x1-2x2-3x3+4x4=Solution:Reducethecoefficientmatrixintoreduced

-1r(-1)

3

4 4 r13(-2)fi

fi 4

6

1

- 4

3

0

x1+2x3=

fi

x+1

原方程组化为 22 r(-

4

x1+2x3=

x+x+2 2

+2x4=

x2=-2x

x

1Let

=t

=-

x -

2=t 2

x=x=

x3

1

4 0 1 0

Thesystema11x1+a12

a11x1+a12

x+ x++

x+

x++ 21

21

KeyThesetofsolutionsofthehomogeneoussystemisaThedifferenceoftwosolutionsofnon-homogenneoussystemisasolutionofhomogeneoussystem.Thegeneralsolutionsisthe非齐次方程组通解=非齐次方程组一个特解+x=x0+c1x1++ RankofVectorSet(向量集的秩向量集的 alLinearlyindependent(2)那么这个子集就称为原向量集的一个极大线性无关组 allinearlyindependencesubset)LetV={v1,v2,,vm}beasetofvectors.U={vi1,vi2,,vik}beasubsetofVItissaidthatthesubsetU={,v,, isa allinearlyindependentsubset,ifandonlyif(1)vi1,v12,,vikarelinear(2)Alltheotherscanbelinearlyexpessusevi1,v12,,vik

v=0, =1,v=0,

v1,v2,v3is allinearlyindependentv1,v2,v4isalso allinearlyindependentLet{v1,v2,,vm}beasetof{v1,v2,v3}is allinearlyindependentProof:在向量集中任取4u1u2u3u4 只有平凡解[x Since{v1,v2,v3}is allinearlyindependentSothatwehaveu1=a11v1+a21v2+u4=a14v1+a24v2+a34v3 (a1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论