版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
小结与复习第21章二次函数与反比例函数要点梳理考点讲练课堂小结课后作业一、二次函数的定义要点梳理1.一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.特别地,当a≠0,b=c=0时,y=ax2是二次函数的特殊形式.2.二次函数的三种基本形式(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0);(2)顶点式:y=a(x-h)2+k(a≠0),由顶点式可以直接写出二次函数的顶点坐标是(h,k);(3)交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是图象与x轴交点的横坐标.二、二次函数的图像和性质函数二次函数y=ax2+bx+c(a,b,c为常数,a≠0)a<0a>0图像开口抛物线开口向上,并向上无限延伸抛物线开口向下,并向下无限延伸对称轴、顶点对称轴是x=,顶点坐标是增减性
在对称轴的左侧,即当x<时,y随x的增大而减小;在对称轴的右侧,即当x>时,y随x的增大而增大,简记为“左减右增”在对称轴的左侧,即当x<时,y随x的增大而增大;在对称轴的右侧,即当x>时,y随x的增大而减小,简记为“左增右减”最值
抛物线有最低点,当
x=时,y有最小值,
y最小值=
抛物线有最高点,当x=时,y有最大值,
y最大值=三、二次函数y=ax2+bx+c的图象特征与系数a,b,c的关系
项目字母字母的符号图像的特征aa>0开口向上a<0开口向下bb=0对称轴为y轴ab>0(a与b同号)对称轴在y轴左侧ab<0(a与b异号)对称轴在y轴右侧cc=0经过原点c>0与y轴正半轴相交c<0与y轴负半轴相交b2-4acb2-4ac=0与x轴有唯一交点(顶点)b2-4ac>0与x轴有两个交点b2-4ac<0与x轴没有交点四、二次函数图象的平移任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,具体平移方法如下:五、二次函数表达式的求法1.一般式:y=ax2+bx+c(a≠0)若已知条件是图象上三个点的坐标,则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值.2.顶点式:y=a(x-h)2+k(a≠0)若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数的值,最后将解析式化为一般式.3.交点式:y=a(x-x1)(x-x2)(a≠0)若已知二次函数图象与x轴的两个交点的坐标,则设交点式y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a的值,最后将解析式化为一般式.六、二次函数与一元二次方程的关系
二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有一个交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.二次函数y=ax2+bx+c的图像和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式(b2-4ac)有两个交点有两个相异的实数根b2-4ac>0有一个交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac<0七、二次函数的应用2.一般步骤:(1)找出问题中的变量和常量以及它们之间的函数关系;(2)列出函数关系式,并确定自变量的取值范围;(3)利用二次函数的图象及性质解决实际问题;(4)检验结果的合理性,是否符合实际意义.1.二次函数的应用包括以下两个方面(1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题);(2)利用二次函数的图像求一元二次方程的近似解.1.反比例函数的定义:函数y=(k是常数,且k≠0)叫做反比例函数.2.反比例函数解析式的变形式:(1)y=kx-1(k≠0)(2)xy=k(k≠0)八、反比例函数的定义函数正比例函数反比例函数解析式图象形状k>0k<0位置增减性位置增减性y=kx
(k≠0)xk
(k是常数,k≠0)y=直线双曲线一三象限
y随x的增大而增大一三象限在每个象限内
y随x的增大而减小二四象限二四象限
y随x的增大而减小在每个象限内y随x的增大而增大九、反比例函数的图象和性质1.反比例函数的图象是两支曲线,2.当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.3.当k>0时.在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.4.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交.5.在一个反比例函数图象上任取两点P、Q,过点P、Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1、S2,则S1=S2
反比例函数图象解读k的几何意义:反比例函数图像上的点(x,y)具有两坐标之积(xy=k)为常数这一特点,即过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴所围成的矩形的面积为常数|k|.规律:过双曲线上任意一点,向两坐标轴作垂线,一条垂线与坐标轴、原点所围成的三角形的面积为常数
.十、反比例函数的k值的意义一般解题步骤应用类型与数学问题相结合学科间的综合(物理公式)审题、准确判断数量关系建立反比例函数的模型根据实际情况确定自变量的取值范围实际问题求解十一、反比例函数的应用考点一求抛物线的顶点、对称轴、最值考点讲练例1
抛物线y=x2-2x+3的顶点坐标为________.【解析】方法一:配方,得y=x2-2x+3=(x-1)2+2,则顶点坐标为(1,2).方法二:代入公式,,则顶点坐标为(1,2).
解决此类题目可以先把二次函数y=ax2+bx+c配方为顶点式y=a(x-h)2+k的形式,得到:对称轴是直线x=h,最值为y=k,顶点坐标为(h,k);也可以直接利用公式求解.方法总结针对训练1.对于y=2(x-3)2+2的图象下列叙述正确的是(
)A.顶点坐标为(-3,2)
B.对称轴为y=3C.当x≥3时,y随x的增大而增大D.当x≥3时,y随x的增大而减小C考点二二次函数的图象与性质及函数值的大小比较例2
二次函数y=-x2+bx+c的图象如图所示,若点A(x1,y1),B(x2,y2)在此函数图象上,且x1<x2<1,则y1与y2的大小关系是(
)A.y1≤y2
B.y1<y2
C.y1≥y2
D.y1>y2【解析】由图象看出,抛物线开口向下,对称轴是直线x=1,当x<1时,y随x的增大而增大.∵x1<x2<1,∴y1<y2.故选B.
当二次函数的表达式与已知点的坐标中含有未知字母时,可以用如下方法比较函数值的大小:(1)用含有未知字母的代数式表示各函数值,然后进行比较;(2)在相应的范围内取未知字母的特殊值,采用特殊值法求解;(3)根据二次函数的性质,结合函数图象比较.方法总结针对训练2.下列函数中,当x>0时,y值随x值增大而减小的是()
A.y=B.y=x-1C.D.y=-3x2D考点三
二次函数y=ax2+bx+c(a≠0)的图象与系数a,b,c的关系例3已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2.其中正确的个数是(
)A.1
B.2
C.3
D.4D【解析】由图象开口向下可得a<0,由对称轴在y轴左侧可得b<0,由图象与y轴交于正半轴可得c>0,则abc>0,故①正确;由对称轴x>-1可得2a-b<0,故②正确;由图象上横坐标为x=-2的点在第三象限可得4a-2b+c<0,故③正确;
由图象上横坐标为x=1的点在第四象限得出a+b+c<0,由图象上横坐标为x=-1的点在第二象限得出
a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.故选D.【答案】D方法总结1.可根据对称轴的位置确定b的符号:b=0⇔对称轴是y轴;a、b同号⇔对称轴在y轴左侧;a、b异号⇔对称轴在y轴右侧.这个规律可简记为“左同右异”.2.当x=1时,函数y=a+b+c.当图象上横坐标x=1的点在x轴上方时,a+b+c>0;当图象上横坐标x=1的点在x轴上时,a+b+c=0;当图象上横坐标x=1的点在x轴下方时,a+b+c<0.同理,可由图象上横坐标x=-1的点判断a-b+c的符号.针对训练3.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是( )A.b≥-1 B.b≤-1C.b≥1
D.b≤1解析:∵二次项系数为-1<0,∴抛物线开口向下,在对称轴右侧,y的值随x值的增大而减小,由题设可知,当x>1时,y的值随x值的增大而减小,∴抛物线y=-x2+2bx+c的对称轴应在直线x=1的左侧而抛物线y=-x2+2bx+c的对称轴,即b≤1,故选择D.D考点四抛物线的几何变换例4将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线表达式是(
)A.y=(x-4)2-6B.y=(x-4)2-2C.y=(x-2)2-2D.y=(x-1)2-3【解析】因为y=x2-6x+5=(x-3)2-4,所以向上平移2个单位长度,再向右平移1个单位长度后,得到的表达式为y=(x-3-1)2-4+2,即y=(x-4)2-2.故选B.方法总结
抛物线平移的规律可总结如下口诀:左加右减自变量,上加下减常数项.针对训练3.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向下平移4个单位B考点五二次函数表达式的确定例5:已知关于x的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7,求这个二次函数的表达式.待定系数法解:设所求的二次函数为y=ax2+bx+c,由题意得:解得,
a=2,b=-3,c=5.∴所求的二次函数表达式为y=2x2-3x+5.方法总结1.若已知图象上的任意三个点,则设一般式求表达式;2.若已知抛物线的顶点坐标或对称轴与最值时,则可设顶点式求表达式,最后化为一般式;3.若已知二次函数图象与x轴的交点坐标为(x1,0)、(x2,0)时,可设交点式求表达式,最后化为一般式.针对训练5.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的表达式.解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同a=1或-1.
又顶点在直线x=1上,且顶点到x轴的距离为5,顶点为(1,5)或(1,-5).
所以其解析式为:(1)y=(x-1)2+5(2)y=(x-1)2-5(3)y=-(x-1)2+5(4)y=-(x-1)2-5
例6若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7【解答】∵二次函数y=x2+mx的对称轴是x=3,∴-=3,解得m=-6,∴关于x的方程x2+mx=7可化为x2-6x-7=0,即(x+1)(x-7)=0,解得x1=-1,x2=7.故选D.考点六二次函数与一元二次方程例7某广告公司设计一幅周长为12m的矩形广告牌,广告设计费用每平方米1000元,设矩形的一边长为x(m),面积为S(m2).(1)写出S与x之间的关系式,并写出自变量x的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.解:(1)设矩形一边长为x,则另一边长为(6-x),∴S=x(6-x)=-x2+6x,其中0<x<6.(2)S=-x2+6x=-(x-3)2+9;∴当x=3时,即矩形的一边长为3m时,矩形面积最大,为9m2.这时设计费最多,为9×1000=9000(元).考点七二次函数的应用方法总结
利用二次函数的知识常解决以下几类问题:最大利润问题,求几何图形面积的最值问题,拱桥问题,运动型几何问题,方案设计问题等.【解析】把P(1,-3)代入(k≠0)得k=1×(-3)=-3.故选B.
B考点八反比例函数的图象与性质D
【解析】方法一:分别把各点代入反比例函数求出y1,y2,y3的值,再比较出其大小即可.方法二:根据反比例函数的图象和性质比较.
比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定.归纳针对训练
6.已知函数,y随x的增大而减小,求a的值和表达式(只考虑学过的函数).解:当函数为正比例函数时,
a2+a-5=1,解得a1=-3,a2=2.∵y随x的增大而减小,∴a=-3.
当函数为反比例函数时,
a2+a-5=-1,解得∵y随x的增大而减小,7.函数(k为常数)的图象上有三点(-3,y1),(-1,y2),(2,y3),则函数值y1、y2、y3的大小关系是_______________;y3<y1<y21考点九与反比例函数k有关的问题
利用反比例函数中k的几何意义时,要注意点的坐标与线段长之间的转化,并且利用关系式和横坐标,求各点的纵坐标是求面积的关键.归纳针对训练8.如图:M为反比例函数y=图象上一点,MA⊥y轴于A,S△MAO=2时,k=
.49.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形,则它的面积为________.2yxOA考点十反比例函数与一次函数的综合解:(1)将点A(m,2)的坐标代入一次函数y1=x+1得2=m+1,解得m=1.即点A的坐标为(1,2).将点A(1,2)的坐标代入反比例函数得k=2.∴反比例函数的解析式为(2)当0<x<1时,y1<y2;当x=1时,y1=y2;当x>1时,y1>y2.yxOA
此类一次函数,反比例函数,二元一次方程组,三角形面积等知识的综合运用,其关键是理清解题思路,在直角坐标系中,求三角形或四边形面积时,常常采用分割法,把所求的图形分成几个三角形或四边形,分别求出面积后再相加.归纳10.如图,一次函数y=kx-1的图象与反比例函数y=的图象交于A,B两点,其中点A的坐标为(2,1).(1)试确定k,m的值;(2)求点B的坐标.yxO12AB针对训练(1)将(2,1)代入y=,得m=1×2=2.将(2,1)代入y=kx-1,得k=1.∴两个函数的表达式为y=,y=x-1.(2)将y=和y=x-1组成方程组为y=,y=x-1.解得x1=-1,y1=-2,x2=2,y2=1.∴点B的坐标为(-1,-2).yxO12AB例12
病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中的含药量y(单位:毫克)与时间x(单位:小时)成正比例;2小时后y与x成反比例(如图).根据以上信息解答下列问题:
(1)求当0≤x≤2时,y与x的函数解析式;
(2)求当x>2时,y与x的函数解析式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【教案】部编语文三上6 秋天的雨【国家级】一
- 2025届小升初语文总复习:非连续性文本阅读附答案解析
- 基础护理护理操作规范
- 《汽车租赁系统》课件
- 医疗个人先进事迹汇报
- 小学二年级数学100以内三数加减混合运算质量练习模拟题大全附答案
- 相关概念第二部分社会工作的内涵和实践领域社会保障社会
- 《电子商务效率》课件
- 养老现状及趋势智慧养老技术概论
- 共话新时代放飞青活动
- 国家太空安全
- 生态护林员日常巡护记录本、生态护林员工作职责
- 小记者第一课我是一名小记者
- 2024年总经理聘任书
- 部编版语文三年级上册第四单元教材解读大单元集体备课
- 二十届三中全会精神知识竞赛试题及答案
- 《生物安全培训》课件-2024鲜版
- 中国农业文化遗产与生态智慧智慧树知到期末考试答案章节答案2024年浙江农林大学
- 慢阻肺健康知识宣教完整版课件
- 神奇的大脑PPT课件
- 增值税预缴税款表电子版
评论
0/150
提交评论