版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学复习专题课件★★空间向量与空间角、距离问题
命题点(一)线面角以空间几何体为载体考查线面角是高考命题的重点.空间向量是将空间几何问题坐标化的工具,利用空间向量求线面角是高考热点,通常以解答题的形式出现,难度中等.[解]
(1)证明:取AB中点为O,连接DO,CO,则OB=DC=1.又DC∥OB,所以四边形DCBO为平行四边形.又BC=OB=1,所以四边形DCBO为菱形,所以BD⊥CO.同理可得,四边形DCOA为菱形,所以AD∥CO,所以BD⊥AD.因为PD⊥底面ABCD,BD⊂底面ABCD,所以PD⊥BD,又AD∩PD=D,AD,PD⊂平面ADP,所以BD⊥平面ADP.因为PA⊂平面ADP,所以BD⊥PA.利用空间向量求线面角的解题模型命题点(二)平面与平面的夹角以空间几何体为载体考查平面与平面的夹角是高考命题的重点.空间向量是将空间几何问题坐标化的工具,利用空间向量求平面与平面的夹角是高考热点,通常以解答题的形式出现,难度中等.[典例]如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,△PAB为正三角形,且侧面PAB⊥底面ABCD,PM=MD.(1)求证:BP∥平面ACM;(2)求平面MBC与平面DBC夹角的余弦值.[关键点拨]切入点(1)在平面ACM内找与PB平行的线;(2)建立坐标系,利用向量法求解迁移点(1)把线面平行问题转化为线线平行问题;(2)把求两平面夹角问题转化为求两法向量的夹角问题障碍点不会建系.本题不能直接建系,需根据侧面PAB⊥底面ABCD,作交线AB的垂线,可得平面ABCD的垂线,从而建立坐标系[解]
(1)证明:连接BD,与AC交于O,连接OM,在△PBD中,因为O,M分别为BD,PD的中点,所以BP∥OM.因为BP⊄平面ACM,OM⊂平面ACM,所以BP∥平面ACM.(2)设E是AB的中点,连接PE,因为△PAB为正三角形,所以PE⊥AB.又因为面PAB⊥底面ABCD,面PAB∩底面ABCD=AB,PE⊂平面PAB,所以PE⊥平面ABCD.过E作EF平行于CB与CD交于F.以E为原点,分别以EB,EF,EP为x,y,z轴,建立如图所示的空间直角坐标系Exyz,利用空间向量平面与平面所成角的解题模型1.(2022·新高考Ⅱ卷)如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E为PB的中点.(1)证明:OE∥平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值.解:(1)证明:如图,取AB的中点D,连接DP,DO,DE.因为AP=PB,所以PD⊥AB.因为PO为三棱锥P-ABC的高,所以PO⊥平面ABC,因为AB⊂平面ABC,所以PO⊥AB.又PO,PD⊂平面POD,且PO∩PD=P,所以AB⊥平面POD.因为OD⊂平面POD,所以AB⊥OD,又AB⊥AC,所以OD∥AC,因为OD⊄平面PAC,AC⊂平面PAC,所以OD∥平面PAC.因为D,E分别为BA,BP的中点,所以DE∥PA,因为DE⊄平面PAC,PA⊂平面PAC,所以DE∥平面PAC.又OD,DE⊂平面ODE,OD∩DE=D,所以平面ODE∥平面PAC.又OE⊂平面ODE,所以OE∥平面PAC.∴四边形O1C1EF是平行四边形,∴O1C1∥EF,∵A1C1=B1C1,∴O1C1⊥A1B1.又在直三棱柱ABC-A1B1C1中,B1B⊥平面A1B1C1,∴B1B⊥O1C1,又B1B∩A1B1=B1,∴O1C1⊥平面A1B1BA,∴EF⊥平面A1B1BA,又EF⊂平面DEB1,∴平面DEB1⊥平面A1ABB1.命题点(三)距离问题[典例]
(2022·菏泽一模)如图,圆柱的轴截面ABCD是正方形,点E在底面圆周上,AF⊥DE,F为垂足.(1)求证:AF⊥DB;(2)当直线DE与平面ABE所成角的正切值为2时,①求二面角E-DC-B的余弦值;②求点B到平面CDE的距离.[解]
(1)证明:由题意可知DA⊥底面ABE,BE⊂底面ABE,故BE⊥DA
,又BE⊥AE,AE∩DA=A,AE,DA⊂平面AED,故BE⊥平面AED,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 21922:2021/Amd 1:2024 EN Refrigerating systems and heat pumps - Valves - Requirements,testing and marking - Amendment 1
- 临时保洁劳务协议
- 员工评语范文(15篇)
- 企业年安全生产工作总结
- 中考结束后家长对老师的感言(9篇)
- 产科护士出科小结范文
- 中秋节晚会的活动主持词(7篇)
- 论语制作课件教学课件
- DB12∕T 902-2019 日光温室和塑料大棚小气候自动观测站选型与安装技术要求
- 课件如何变现教学课件
- 2024冶金等工业企业较大以上安全风险目录
- 期中模拟检测(1-4单元)(试题)(含答案)-2024-2025学年四年级上册数学北师大版
- 餐饮服务课件 学习任务3 西餐宴会服务
- 《2023级学生手册》奖、惩资助、文明部分学习通超星期末考试答案章节答案2024年
- 国开2024年秋《机械制图》形考作业1-4答案
- 大学生生涯发展展示 (修改版)
- 义务教育物理课程标准(2022年版)测试题文本版(附答案)
- 甲状腺癌 教学课件
- 客房部计划卫生表
- (2021年整理)人教版五年级数学知识点归纳总结
- (完整版)装修成品保护施工方案
评论
0/150
提交评论