北师大版数学八年级下册各单元测试卷及答案_第1页
北师大版数学八年级下册各单元测试卷及答案_第2页
北师大版数学八年级下册各单元测试卷及答案_第3页
北师大版数学八年级下册各单元测试卷及答案_第4页
北师大版数学八年级下册各单元测试卷及答案_第5页
已阅读5页,还剩132页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°2.如图,将三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数是()3.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cmB.4cmC.10cmD.以上都不对4.已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点A1处,CA与AB交于点N,且AN=AC,1则∠A的度数是()A.30°B.36°C.50°D.60°5.如图,在△ABC中,∠C=60°,∠B=50°,D是BC上一点,DE⊥AB于点E,DF6.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分8.在直角△ABC中,∠C=30°,斜边AC的长为5cm,则AB的长为()9.如果直角三角形中30°角所对的直角边是1cm,那么另一条直角边长是()A.1cmB.2cmC.cmD.3cm10.10(1分)(2014春•九龙坡区校级期中)等腰三角形一腰上的高等于这腰的第2页(共137页)A.30°B.60°C.30°或150°D.60°或120°11.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM的周长是()A.21B.18C.13D.1512.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠2A.2B.4C.8D.1614.如图,在三角形纸片ABC中,AC=6,∠A=30°,∠C=90°,将∠A沿DE折叠,A与点B重合,则折痕DE的长为()A.1B.C.D.215.如图,在Rt△ABC中,CD是斜边AB上的中线,则图中与CD相等的线段有()A.AD与BDB.BD与BCC.AD与BCD.AD、BD与BC16.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为A.20B.12C.14D.1317.如图,在Rt△ABC中,∠C=90°,AB=5cm,D为AB的中点,则CD等于()二、填空题18.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=.19.如图,△ABC中,∠C=90°,AC﹣BC=2,△ABC的面积为7,则AB=.20.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则AC=∠ACB=90°,CD是高,∠A=30°,BD=3cm,则AD=cm.22.如图,△ABC是等腰直角三角形,AB=BC,已知点A的坐标为(﹣2,0),点B的坐标为(0,1),则点C的坐标为.23.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=.24.已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为.25.若直角三角形两直角边的比为3:4,斜边长为20,则此直角三角形的面积为.三、解答题26.如图,在△ABC中,∠B=2∠C,且AD⊥BC于D,求证:CD=AB+BD,28.如图,AD∥BC,BD平分∠ABC,∠A=120°,∠C=60°,AB=CD=4cm,求:(2)四边形ABCD的周长.29.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,1.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【考点】K8:三角形的外角性质.【专题】选择题【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可【点评】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.2.如图,将三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数是()A.35°B.65°C.55°D.25°【考点】R2:旋转的性质.【分析】根据旋转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,则∠A度数可求.【解答】解:∵△ABC绕着点C时针旋转35°,得到△AB′C′C.【点评】本题考查了旋转的性质,根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解题的关键是正确确定对应角.3.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cmB.4cmC.10cmD.以上都不对【考点】KF:角平分线的性质;KW:等腰直角三角形.【专题】选择题【分析】由∠C=90°,根据垂直定义得到DC与AC垂直,又AD平分∠CAB交BC于D,DE⊥AB,利用角平分线定理得到DC=DE,再利用HL证明三角形ACD与三角形AED全等,根据全等三角形的对应边相等可得AC=AE,又AC=BC,可得BC=AE,然后由三角形BED的三边之和表示出三角形的周长,将其中的DE换为DC,由CD+DB=BC进行变形,再将BC为换AE,由AE+EB=AB,可得出三角形BDE的周长等于AB的长,由AB的长可得出周长.【解答】解:∵∠C=90°,∴DC⊥AC,在Rt△ACD和Rt△AED中,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,【点评】此题考查了角平分线定理,垂直的定义,直角三角形证明全等的方法﹣HL,利用了转化及等量代换的思想,熟练掌握角平分线定理是解本题的关键.A.30°B.36°C.50°D.60°【考点】PB:翻折变换(折叠问题).【专题】选择题【分析】首先证明∠ACN=∠ANC=2∠ACM,然后证明∠A=∠ACM即可解决问题.【解答】解:由题意知:∠ACM=∠NCM;又∵AN=AC,∴∠ACN=∠ANC=2∠ACM;∵CM是直角△ABC的斜边AB上的中线,∴CM=AM,∴∠A=∠ACM;A.90°B.100°C.110°D.120°【考点】KN:直角三角形的性质.【专题】选择题【分析】由三角形内角和定理求得∠A=70°;由垂直的定义得到∠AED=∠AFD=90°;然后根据四边形内角和是360度进行求解.【解答】解:如图,∵在△ABC中,∠C=60°,∠B=50°,∴∠A=70°.∵DE⊥AB于点E,DF⊥AC于点F,∴∠AED=∠AFD=90°,∴∠EDF=360°﹣∠A﹣∠AED﹣∠AFD=110°.故选:C.【点评】本题考查了直角三角形的性质.注意利用隐含在题中的已知条件:三角6.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角【分析】由“直角三角形的两锐角互余”,结合题目条件,找出与∠A互余的角.【解答】解:∵∠ACB=90°,CD是AB边上的高线,∴∠A+∠B=90°,∠A+∠ACD=90°,【点评】此题考查了直角三角形的性质,直角三角形的两锐角互余.7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分A.3cmB.4cmC.6cmD.9cmKO:含30度角的直角三角形;KG:线段垂直平分线的性质.【专题】选择题【考点】【分析】求出AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=3cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,第12页(共137页)∴∠2=∠A,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.8.在直角△ABC中,∠C=30°,斜边AC的长为5cm,则AB的长为()A.4cmB.3cmC.2.5cmD.2cm【分析】由题意可得,∠B是直角,AB=AC,直接代入即可求得AB的长.【点评】此题考查的是直角三角形的性质,30°的直角边所对的直角边等于斜边9.如果直角三角形中30°角所对的直角边是1cm,那么另一条直角边长是()A.1cmB.2cmC.cmD.3cm【考点】KO:含30度角的直角三角形.【专题】选择题【分析】根据勾股定理和直角三角形中30°角所对的直角边是斜边的一半求另一条直角边长.∴另一条直角边长是:=;故选C.【点评】本题考查了含30度角的直角三角形.在直角三角形中,30°角所对的直角边是斜边的一半.10.等腰三角形一腰上的高等于这腰的一半,则这个等腰三角形的顶角等于()A.30°B.60°C.30°或150°D.60°或120°【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【分析】分为两种情况:①高BD在△ABC内时,根据含30度角的直角三角形性质求出即可;②高CD在△ABC外时,求出∠DAC,根据平角的定义求出∠BAC即可.②如图,∴∠BAC=180°﹣30°=150°,【点评】本题考查了等腰三角形性质和含30度角的直角三角形性质的应用,主要考查学生能否求出符合条件的所有情况,注意:一定要分类讨论.11.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM的周长是()【分析】根据“BE、CF分别是△ABC的高,M为BC的中点”得到FM=EM=BC,【解答】解:∵BE、CF分别是△ABC的高,M为BC的中点,∴在Rt△BCE中,EM=BC=4,在Rt△BCF中,FM=BC=4,∴△EFM的周长=EM+FM+EF=4+4+5=13,故选C.【点评】本题利用直角三角形斜边上的中线等于斜边的一半.12.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()【分析】根据高线的定义可得∠AEC=90°,然后根据∠C=70°,∠ABC=48°求出∠CAB,再根据角平分线的定义求出∠1,然后利用三角形的内角和等于180°列式计算即可得解.∴∠AEB=90°∵AF是角平分线,∴∠1=∠CAB=31°,在△AEF中,∠EFA=180°﹣31°﹣90°=59°.∴∠3=∠EFA=59°,故选:A.【点评】本题考查了三角形的内角和定理,角平分线的定义,高线的定义,熟记概念与定理并准确识图是解题的关键.13.在Rt△ABC中,∠C=90°,AB=2,则AB2+BC2+CA2的值为()A.2B.4C.8D.16【考点】KQ:勾股定理.【专题】选择题【分析】由三角形ABC为直角三角形,利用勾股定理得到斜边的平方等于两直角边的平方和,根据斜边AB的长,可得出两直角边的平方和,然后将所求式子∴CA2+BC2=AB2,则AB2+BC2+CA2=AB2+(BC+CA2)=4+4=8,2【点评】此题考查了勾股定理的知识,是一道基本题型,解题关键是熟练掌握勾股定理,难度一般.14.如图,在三角形纸片ABC中,AC=6,∠A=30°,∠C=90°,将∠A沿DE折叠,【考点】PB:翻折变换(折叠问题);KQ:勾股定理;T7:解直角三角形.∵∠EBC=∠DBE,∠BCE=∠BDE=90°,BE=BE,∴△BCE≌△BDE.∴CE=DE.∵AC=6,∠A=30°,∴BC=AC×tan30°=2.∵∠CBE=30°.点D是AB的中点,故得与CD相等的线段.【解答】解:∵CD=AB,点D是AB的中点,∴CD=AD=BD,A.20B.12C.14D.13【考点】KP:直角三角形斜边上的中线;KH:等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.∴DE=CE=AC=5,【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.17.如图,在Rt△ABC中,∠C=90°,AB=5cm,D为AB的中点,则CD等于()【分析】本题涉及到的知识点是“直角三角形斜边上的中线等于斜边的一半”,所以有CD=AB,故可直接求得结果.∴CD=AB=2.5cm.故选B.【点评】此题主要是考查了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.18.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=.【考点】KO:含30度角的直角三角形.【专题】填空题【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,∴BD=AD=6,再由30°角所对的直角边等于斜边的一半即可求出结果.【解答】解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=BD=6×=3.故答案为:3.【点评】本题利用了直角三角形的性质和角的平分线的性质求解.19.如图,△ABC中,∠C=90°,AC﹣BC=2,△ABC的面积为7,则AB=.【考点】KQ:勾股定理.【专题】填空题【分析】先根据AC﹣BC=2得出(得出AC•BC的值,进而可得出结论.AC﹣BC=2,AC﹣BC)2=8①.AC﹣BC)2=8,再根据△ABC的面积等于7∵S△ABC=AC•BC=7,∴AC•BC=14②,2∴AB==6.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.20.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则AC=.【分析】根据三角形内角和定理和角平分线定义求出∠A=∠ABD=∠CBD=30°,求出AD=BD=6,CD=BD=3,即可求出答案.【解答】解:∵在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,∠A=90°﹣60°=30°,∠CBD=∠ABD=∠ABC=30°,∴BD=6,∴CD=BD=3,∴AC=6+3=9,故答案为:9.【点评】本题考查了三角形内角和定理,含30度角的直角三角形的性质,等腰三角形的判定的应用,解此题的关键是求出AD=BD和CD=BD,题目比较好,21.如图:△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=3cm,则AD=cm.【考点】30度角的直角三角形.KO:含【专题】填空题【分析】根据同角的余角相等求出∠BCD=∠A=30°,再根据30°角所对的直角边等于斜边的一半求出BC、AB的长,然后根据AD=AB﹣BD计算即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=30°,∵BD=3cm,∴BC=2BD=6cm,AB=2BC=12cm,∴AD=AB﹣BD=9cm.故答案是:9.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.22.如图,△ABC是等腰直角三角形,AB=BC,已知点A的坐标为(﹣2,0),点B的坐标为(0,1),则点C的坐标为.【考点】KW:等腰直角三角形;D5:坐标与图形性质;KD:全等三角形的判定【分析】先根据AAS判定△ACD≌△BAO,得出CD=AO,AD=BO,再根据点A的坐标为(﹣2,0),点B的坐标为(0,1),求得CD和OD的长,得出点C的坐【解答】解:过C作CD⊥x轴于D,则∠CDA=∠AOB=90°,又∵∠AOB=90°,又∵点A的坐标为(﹣2,0),点B的坐标为(0,1),又∵点C在第三象限,C的坐标为(﹣3,2).故答案为:(﹣3,2).【点评】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,解决问题的关键是根据全等三角形的性质,求得点C到坐标轴的距离.23.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若【考点】KO:含30度角的直角三角形;KF:角平分线的性质.【专题】填空题【分析】根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.【解答】解:∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,故答案为2.【点评】本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.24.已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为.【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【专题】填空题【分析】分四种情况:①当AB=AC时,根据AD=BC,可得出底角为45度;②当AB=BC时,根据AD=BC,可得出底角为15度.③当AC=BC时,底角等于75°④点A是底角顶点,且AD在△ABC外部时.【解答】解:分四种情况进行讨论:①当AB=AC时,∵AD⊥BC,∴BD=CD,∵AD=BC,∴AD=BD=CD,∴底角为45度;②当AB=BC时,∵AD=BC,∴∠ABD=30°,∴∠BAC=∠BCA=75°,∵AD=BC,AC=BC,∴∠C=30°,∵AD=BC,AC=BC,∴AD=AC,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°,故答案为15°或45°或75°.【点评】本题考查了含30度角的直角三角形以及等腰三角形的性质,注意分类讨论思想的运用.25.若直角三角形两直角边的比为3:4,斜边长为20,则此直角三角形的面积为.【考点】KQ:勾股定理.【分析】先根据比值设出直角三角形的两直角边,用勾股定理求出未知数x,即【解答】解:设直角三角形的两直角边分别为3x,4x(x>0),根据勾股定理得,(3x)2+(4x)2=202,∴x=4或x=﹣4(舍),∴3x=12,4x=16【点评】此题是勾股定理的应用,主要考查了勾股定理,三角形的面积计算方法,26.如图,在△ABC中,∠B=2∠C,且AD⊥BC于D,求证:CD=AB+BD,【考点】KJ:等腰三角形的判定与性质.【专题】解答题【分析】在DC上取DE=BD,然后根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AB=AE,根据等边对等角的性质可得∠B=∠AEB,然后根据三∠C=∠CAE,再根据角形的一个外角等于与它不相邻的两个内角的和列式求出等角对等边的性质求出AE=CE,然后即可得证.【解答】证明:如图,在DC上取DE=BD,∵AD⊥BC,∴AB=AE,∴∠B=∠AEB,在△ACE中,∠AEB=∠C+∠CAE,又∵∠B=2∠C,∴2∠C=∠C+∠CAE,∴∠C=∠CAE,∴CD=CE+DE=AB+BD,(2)求证:CE是AB边上的中线,且CE=AB,【考点】KP:直角三角形斜边上的中线;KJ:等腰三角形的判定与性质.【专题】解答题【分析】(1)利用直角△BCD的两个锐角互余的性质进行解答;(2)利用已知条件和(1)中的结论可以得到△ACE是等边三角形和△BCE为等腰三角形,利用等腰三角形的性质证得结论.【解答】(1)解:∵在△ABC中,∠ACB=90°,CD,CE三等分∠ACB,∴∠ACD=∠DCE=∠BCE=30°,则∠BCD=60°,又∵CD为高,∴∠B=90°﹣60°=30°30°;(2)证明:由(1)知,∠B=∠BCE=30°,则CE=BE,AC=AB,∵∠ACB=90°,∠B=30°,∴∠A=60°,∴AE=BE,即点E是AB的中点.∴CE是AB边上的中线,且CE=AB,【点评】本题考查了等腰三角形的判定与性质,直角三角形斜边上的中线.本题解题过程中利用了“等角对等边”以及等边三角形的判定与性质证得(2)的结论28.如图,AD∥BC,BD平分∠ABC,∠A=120°,∠C=60°,AB=CD=4cm,求:(2)四边形ABCD的周长.【考点】JA:平行线的性质.【专题】解答题【分析】(1)根据AD∥BC,可得∠ADB=∠CBD;根据BD平分∠ABC,可得∠ABD=∠DBC,于是得到∠ABD=∠ADB,所以可证AB=AD;(2)证出△BCD是直角三角形,利用30°的角所对的直角边是斜边的一半,即可求出BC的长.【解答】(1)解:∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AD=AB=4cm;【分析】(1)根据直角三角形斜边上中线性质求出DM=BC=4,EM=BC=4,即可求出答案;(2)根据三角形内角和定理求出∠ABC+∠ACB=120°,根据直角三角形斜边上中线性质求出DM=BM,EM=CM,推出∠ABC=∠BDM,∠ACB=∠CEM,根据三角形内第29页(共137页)角和定理求出即可;(3)求出EM=EN,解直角三角形求出∠EMD度数,根据三角形的内角和定理【解答】解:(1)∵CD,BE分别是AB,AC边上的高,∴△DME的周长是DE+EM+DM=3+4+4=11;(2)证明:∵∠A=60°,∴∠DME=90°,∴∠ABC+∠ACB=(180°﹣∠DMB+180°﹣∠EMC)=135°,【点评】本题考查了等腰三角形的判定和性质,三角形的内角和定理,解直角三角形的性质,直角三角形斜边上中线性质的应用,能综合运用性质进行推理是解此题的关键,本题综合性比较强,有一定的难度,注意:直角三角形斜边上的中线等于斜边的一半.单元测试(二)一、选择题1.不等式﹣2x<4的解集是()A.x>2B.x<2C.x<﹣2D.x>﹣22.下列不等式一定成立的是()A.5a>4aB.x+2<x+3C.﹣a>﹣2aD.2B.x>﹣2C.x<2D.x>27.不等式组的解集是()A.x<3B.3<x<4C.x<4D.无解解集的是()D.y1和y2的图象,当x=1,两个函数值的大小为()10.观察函数A.y>yB.y<yC.y=yD.y≥y12121212m的取值范围是()A.﹣1B.0C.1D.413.已知三角形的两边为3和4,则第三边a的取值范围是.14.不等式组的解集是.15.不等式组16.若a>c,则当m时,17.小于88的两位正整数,它的个位数字比十位数字大4,这样的﹣1<x<4的整数解有个.am<cm;当m时,am=cm.两位数有个.18.不等式组﹣1<x﹣5<11的解集是.19.若不等式组有解,则a的取值范围是.20.一次函数y=﹣3x+12中x时,y<0.21.不等式x﹣8>3x﹣5的最大整数解是.22.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.24.解不等式组:25.已知不等式组的解集为﹣的值等于多少?1<x<1,则(m+n)201426.是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.27.小颖准备用21元钱买笔和笔记本.已知每枝笔3元,每个笔记本2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几枝笔?28.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每20棵没人植,若每人植8棵,则有一人比其他人植的少(但有人植4棵,则余树植),问这个植树小组有多少人?共有多少棵树?29.甲存200元.如果设两人存款时间为x月.甲存(1)试写出y1与x及y2与x之间的、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月款额是y元,乙存款额是y元.12函数关系式;(2)到第几个月时,甲存款额能超过乙存款额?30.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.答案与解析1.不等式﹣2x<4的解集是()第36页(共137页)

A.x>2B.x<2C.x<﹣2D.x>﹣2【考点】C6:解一元一次不等式.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:2.下列不等式一定成立的是()A.5a>4aB.x+2<x+3C.﹣a>﹣2aD.【解答】解:A、因为5>4,不等式两边同乘以a,而a≤0时,不等号方向改变,即5a≤4a,故错误;B、因为2<3,不等式两边同时加上C、因为﹣1>﹣2,不等式两边同乘以a,而2a,故错误;x+2<x+3正确;D、因为4>2,不等式两边同除以a,而a≤0时,不等号方向改变,即,故错误.故选B.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:第37页(共137页)【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<2,故不等式﹣3x+6>0的正整数解为1,故选【点评】正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.D.【考点】C4:在数轴上表示不等式的解集.【专题】选择题【分析】根据在数轴上表示不等式解集的方法利用排除法进行解答.【解答】解:∵不等式x≥﹣2中包含等于号,∴必须用实心圆点,∴可排除A、B,x≥﹣2中是∴折线应向右折,D,C.∵不等式大于等于,∴可排除故选:【点评】本题考查的是在数轴上表示不等式解集的方法,即“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.图象在写出对应的自图象【解答】解:由图象可得,交点为(一次函数的图象与x轴的﹣2,0),当y<0时,x<﹣2,【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.不等式组的解集是()A.x<3B.3<x<4C.x<4D.无解【分析】先求出不等式x﹣1>2的解集,继而根据“大小小大中间找”即可确定不故选:【点评】本题主要考查解不等式组的能力,熟练掌握确定不等式组的解集的口诀是关键.【考点】C2:不等式的性质.【分析】看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.【解答】解:A、不等式两边都乘﹣1,不等号的方向改变,错误;B、3>2>0,但<,错误;C、正数的奇次幂是正数,a>0,错误;3D、两个正数,较大的数的平方也大,正确;故选D【点评】注意不等式的性质:不等式两边乘(或除以)同一个正数,不等号的方向不变.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】注意:表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.10.观察函数y1和y2的图象,当x=1,两个函数值的大小为()A.y>yB.y<yC.y=yD.y1≥y2121212【考点】FD:一次函数与一元一次不等式.【专题】选择题【分析】从图象得到,当x=1时,函数y对应的点在函数y对应的点的上面,21上故有y1<y2.【解答】解:当x=1时,函数y对应的点在函数y对应点的上面,因而当x=1,21上12故选B.【点评】认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.A.m>5B.m≥5C.m<5D.m≤8【考点】C3:不等式的解集.故选:C.【点评】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.A.﹣1B.0C.1D.4CC:一元一次不等式组的【分析】首先解第二个不等式,两个不等式的解集的公共部分就是不等式组的解则不等式组的解集是:﹣<x≤4,则最小的整数解是:0,故选B.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于13.已知三角形的两边为3和4,则第三边a的取值范围是.【考点】K6:三角形三边关系.【专题】填空题【分析】已知两边的值,则第三边的范围是:大于两边的差,而小于两边的和.【解答】解:根据三角形的三边关系,得4﹣3<a<4+3,即1<a<7,故答案为:1<a<7.【点评】本题需要记住已知两边求第三边的范围的方法,即可求解此题.14.不等式组的解集是.【考点】CB:解一元一次不等式组.【专题】填空题【分析】根据“小大大小中间找”的原则求出不等式组的解集即可.1<3,1<x<3,1<x<3.【解答】解:∵﹣∴此不等式组的解集为:﹣故答案为:﹣【点评】本题考查的是解一元一次不等式组,熟知“小大大小中间找”的原则是解答此题的关键.15.不等式组﹣1<x<4的整数解有个.【考点】CC:一元一次不等式组的整数解.【专题】填空题【分析】直接根据不等式﹣内的整数可得其整数解,也可借助数轴1<x<4范围直观解答.【解答】解:在﹣1<x<4范围内的整数只有0,1,2,3,所以等式﹣1<x<4的整数解有4个,故答案为4.【点评】本题主要考查一元一次不等式组的整数解,准确的找到不等式解集范围内的整数是解题的关键.若借助数轴可更直观解答.16.若a>c,则当m时,am<cm;当m时,am=cm.【考点】C2:不等式的性质.【专题】填空题【分析】根据不等式的基本性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,可知m<0,a>c,又知:am<cm,【解答】解:∵∴根据不等式的基本性质3可得:m<0;又知:am=cm,∴m=0,故答案为:<0;=0.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(2)不等式两边乘(或除以)(3)不等式两边乘(或除以)同一个负数,不(或减)同一个数(或式子),不等号的方向不变.同一个正数,不等号的方向不变.等号的方向改变.17.小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有个.【考点】C9:一元一次不等式的应用.【专题】填空题【分析】(1)根据“两位正整数其个位数字比十位数字大4”可得此两位数为(10×十位数)+个位数;(2)再根据此两位数小于88,列出不等式即可.第44页(共137页)得x<又∵x应为正整数,且大于0;并且0≤个位数字≤9,因而5≤x+4≤9故这样的两位数有5个.【点评】用不等式进行求解时,应注意未知数的限制条件.本题中正确用代数式.【考点】【专题】【分析】不等式每个部分都加5得,4<x<16.【点评】集的求法,其简便求法就是用口诀求解.也CB:解一元一次不等式组.填空题可以直接用口诀解题,也可用不等式的性质直接解不等式组.【解答】解:4<x<16,故答案为:主要考查了一元一次不等式解可利用不等式的性质求解(不等式两边同时加上一个数,不等号的方向不变).求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.若不等式组有解,则a的取值范围是.【考点】C3:不等式的解集.【专题】填空题【分析】有解,可得a与2的关系,可得答案.【解答】解:∵不等式组有解,∴a≤2,故答案为:a≤2.【点评】本题考查了不等式的解集,不等式的解集是大于小的小于大的.20.一次函数y=﹣3x+12中xy<0.时,【考点】FD:一次函数与一元一次不等式.【专题】填空题【分析】y<0即3x+12<0,解不等式即可求解.【解答】解:根据题意得:﹣3x+12<0,解得:x>4,故答案为:>4【点评】本题考查了一次函数与不等式的关系,认真体会一次函数与一元一次不等式(组)之间的内在联系.把求函数自变量的取值的问题转化为不等式的求解问题是关键.21.不等式x﹣8>3x﹣5的最大整数解是.【考点】C6:解一元一次不等式.【专题】填空题【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x﹣8>3x﹣5的解集为x<﹣;所以其最大整数解是﹣2.【点评】解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.22.直线l:y=x+1与直线l:y=mx+n相交于点P(a,2),则关于x的不等式x+112≥mx+n的解集为.【分析】首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,x≥1时,x+1≥mx+n,x≥1.从图中直接看出,当【点评】此题主要考查了一次函数与一元一次不等式,关键是求出两函数图象的交点坐标,根据函数图象可得答案.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(1)去括号,得:5x﹣2x≤6+6,合并同类项,得:3x≤12,系数化为1,得:x≤4,将解集表示在数轴上如下:5x﹣6≤2x+6,(2)去分母,得:2(2x﹣1)﹣(5x﹣1)<0,4x﹣2﹣5x+1<0,x<1,去括号,得:移项、合并,得:﹣第47页(共137页)将解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.24.解不等式组:【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找即可确定不等式组的解集;(2)分别求出每一个不等式的解集,根据口诀:大小小大中间找即可确定不等式【解答】解:(1)解不等式5x﹣6≤2(x+3),得:x≤4,解不等式,得:x>0,∴不等式组的解集为0<x≤4;3+x≤2(x﹣2)+7,得:x≥0,5x﹣1<3(x+1),得:x<2,0≤x<2.(2)解不等式解不等式∴不等式组的解集为【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大到”的原则是解答取大;同小取小;大小小大中间找;大大小小找不此题的关键.25.已知不等式组1<x<1,则(m+n)的值等于多少?的解集为﹣2014CB:解一元一次不等式组.【分析】解不等式解不等式2x﹣m>n﹣1得x>,由不等式组的解集为﹣m+n的值,代入即可.=﹣1,【点评】本题主要考查解不等式的基本能力,根据不等式组的解集得出m+n的26.是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,【分析】解此题时可以解出二元一次方程组中x,y关于k的式子,然后解出k的范围,即可知道k的取值.【解答】解:解方程组得解之得2<k≤5k为整数∴k只能取3,4,5k为3,4,5时,方程组的解中,x大于1,y不大于1.【点评】此题考查的是二元一次方程组和不等式的性质,要注意的是x>1,y≤1,则解出x,y关于k的式子,最终求出k的范围,即可知道整数k的值.27.小颖准备用21元钱买笔和笔记本.已知每枝笔3元,每个笔记本2.2元,【考点】C9:一元一次不等式的应用.【分析】设她还可能买x只笔,根据总钱数不超过21元,列不等式求解.【解答】解:设她还可能买x只笔,3x+2×2.2≤21,x≤.【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出28.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?CE:一元一次不等式组的应用.【分析】设该校一共有x人去植树,共有y棵树.则根据题意可得:,求解即得【解答】解:设个植树小组有x人去植树,共有y棵树.由“每人植4棵,则余20棵没人植”和“若每人植8棵,则有一人比其他人植的(但有树植)”得:少,将y=4x+20代入第二个式子得:0<4x+20﹣8(x﹣1)<8,5<x<7.答这个植树小组有6人去植树,共有4×6+20=44棵树.【点评】此题考查一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.29.甲、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月存200元.如果设两人存款时间为x月.甲存款额是y1元,乙存款额是y2元.(1)试写出y1与x及y2与x之间的函数关系式;(2)到第几个月时,甲存款额能超过乙存款额?【考点】FH:一次函数的应用.【专题】解答题【分析】(1)根据存款数=原有存款+又存入的钱数,列式即可;(2)列出一元一次不等式,然后求解即可.【解答】解:(1)根据题意,甲:y=400x1+800,乙:y=200x2+1800;(2)根据题意,400x+800>200x+1800,解得x>5,所以,从第6个月开始,甲存款额能超过乙存款额.【点评】本题考查了一次函数的应用,比较简单,读懂题目信息是解题的关键.30.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买购买1台电脑和2台电子白板需要3.5万元,2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.(1)先设每台电脑台电子白板需要3.5万元,购买x,y的值即可;(2)先设需购进电脑a台,则购进电子白板(30台,总费用不超过30万元,但不低于28万元列出不等式组,求出x万元,每台电子白板y万元,根据购买1台电脑和22台电脑和1台电子白板需要2.5万元列出方程30﹣a)台,根据需购进电脑和电子白板共的取值范围,再根据a只能取整数,得出购买方案,再根据每台电脑的价格和每【解答】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,解得:15≤a≤17,∵a只能取整数,∴a=15,16,17,∴有三种购买方案,方案1:需购进电脑15台,则购进电子白板15台,方案2:需购进电脑16台,则购进电子白板14台,方案3:需购进电脑17台,则购进电子白板13台,方案1:15×0.5+1.5×15=30(万元),单元测试(三)一、选择题1.将长度为5cm的线段向上平移10cm后,所得线段的长度是()A.10cmB.5cmC.0cmD.无法确定2.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()3.一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是()①对应线段平行③图形的形状和大小都没有发生变化④对应角相等.4.如图,△ABC和△BDE是等边三角形,点A、B、D在一条直线上,并且AB=BD.由一个三角形变换到另一个三角形()A.仅能由平移得到B.仅能由旋转得到5.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣1,﹣2)6.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点AB1C1的位C、A、B1在同一条直线上,置,使得点A.55°B.70°C.125°D.145°7.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度8.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°9.在平面直角坐标系中,线段OP的两个端点坐标分别是将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)10.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD被纸板覆盖部分的面积为()O(0,0),P(4,3),D.a22211.关于这一图案,下列说法正确的是()A.图案乙是由甲绕B.图案乙是由甲绕点C旋转108°得到的C.图案乙是由甲沿AB方向平移3个边长的距离得到的D.图案乙是由甲沿直线BC翻转180°得到的12.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点ABO,则点A的坐标为()O旋转150°后得11,)或(﹣2,0)1)13.线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是.14.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到EF和EG的位置,则△EFG为三角形.15.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.16.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是17.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.18.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.三、解答题19.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;O按逆时针方向旋转180°得到△ABC,请画出△ABC.20.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究第57页(共137页)已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使SDCF=SBDE,请直接写出相应的BF的长.21.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0).得到正方形A′B′C′D′及其内部的点,其中点A、B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.答案与解析1.将长度为5cm的线段向上平移10cm后,所得线段的长度是()A.10cmB.5cmC.0cmD.无法确定【考点】Q2:平移的性质.【专题】选择题【分析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【解答】解:线段长度不变,还是5cm.故选B.【点评】此题主要考查平移的基本性质,题目比较基础,把握平移的性质即可.2.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()D.【考点】R5:中心对称图形.【专题】选择题【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【点评】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是()①对应线段平行②对应线段相等③图形的形状和大小都没有发生变化④对应角相等.A.①②③B.②③④C.①②④D.①③④【考点】R2:旋转的性质;Q2:平移的性质.【专题】选择题【分析】根据平移和旋转的性质对各小题分析判断,然后利用排除法求解.【解答】解:①平移后对应线段平行,旋转对应线段不一定平行,故本小题错误;②无论平移还是旋转,对应线段相等,故本小题正确;③无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确;④无论平移还是旋转,对应角相等,故本小题正确.综上所述,说法正确的是②③④.故选B.【点评】本题主要考查了旋转的性质,平移的性质,熟记旋转变换,平移变换都4.如图,△ABC和△BDE是等边三角形,点A、B、D在一条直线上,并且AB=BD.由一个三角形变换到另一个三角形()A.仅能由平移得到B.仅能由旋转得到C.既能由平移得到,也能由旋转得到D.既不能由平移得到,也不能由旋转得到【考点】RA:几何变换的类型.【专题】选择题【分析】是轴对称图形,这三对全等三角形中的一个都是以其中另一个三角形绕点B旋转90°后得到或对折得到的.【解答】解:∵△ABC和△BDE是等边三角形,点A、B、D在一条直线上,并且AB=BD.∴这三对全等三角形中的一个都是以其中另一个三角形绕点B旋转90°后得到或对折得到的.故选C.【点评】本题考查了几何变换的类型,解题的关键是看清由两个三角形组成的图象是轴对称图形还是中心对称图形.5.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)Q3:坐标与图形变化﹣平移;P5:关于x轴、C.(1,2)D.(1,﹣2)【考点】y轴对称的点的坐标.【专题】选择题【分析】先利用平移中点的变化规律求出点A′的坐标,再根据关于y轴对称的点的坐标特征即可求解.【解答】解:∵将点A(3,2)沿x轴向左平移4个单位长度得到点A′,A′的坐标为(﹣1,2),A′关于y轴对称的点的坐标是(C.1,2).故选:【点评】本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,6.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°【考点】R2:旋转的性质.【专题】选择题【分析】根据直角三角形两锐角互余求出∠BAC,然后求出∠BAB1,再根据旋转的性质对应边的夹角∠BAB1即为旋转角.【解答】解:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°,∴旋转角等于125°.故选C.【点评】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.7.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度【考点】Q2:平移的性质.【解答】解:观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到∴平移距离就是线段BE的长度.【点评】本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′A.30°B.35°C.40°D.50°【考点】R2:旋转的性质;JA:平行线的性质.【专题】选择题【分析】首先证明∠ACC′=∠AC′C;然后定理求出∠CAC′=30°运用三角形的内角和即可解决问题.【解答】解:由题意得:AC=AC′,【点评】该命题以三角形为载体,以旋转变换为方法,综合考查了全等三角形的性质及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.9.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】R7:坐标与图形变化﹣旋转.【专题】选择题【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.【点评】本题考查了坐标与图形变化﹣旋转:在直角坐标系中线段的旋转问题转化为直角三角形的旋转,然后利用旋转的性质求出相应的线段长,再根据点的坐标特征确定点的坐标.10.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕【考点】R2:旋转的性质.【分析】扇形的半径交AD于E,交CD于F,连结OD,如图,利用正方形的性质得OD=OC,∠COD=90°,∠ODA=∠OCD=45°,再利用等角的余角相等得到∠EOD=ABCD=a2.【解答】解:扇形的半径交AD于E,交CD于F,连结OD,如图,∵四边形ABCD为正方形,∴S阴影部分=SDOC=S正方形ABCD=a2.△A.图案乙是由甲绕BC的中点旋转180°得到的B.图案乙是由甲绕点C旋转108°得到的C.图案乙是由甲沿AB方向平移3个边长的距离得到的D.图案乙是由甲沿直线BC翻转180°得到的【解答】解:如图所示:可得图案乙是由甲绕BC的中点旋转180°得到的.故选:A.12.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得ABO,则点A的坐标为()1A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2)D.(,﹣1)【分析】需要分类讨论:在把△ABO绕点O顺时针旋转150°和逆时针旋转150°1【解答】解:∵△ABO中,AB⊥OB,OB=,AB=1,∴tan∠AOB==,∴∠AOB=30°.如图1,当△ABO绕点O顺时针旋转150°后得到△ABO,则∠A1OC=150°﹣∠AOB11则易求A1(﹣1,﹣);如图2,当△ABO绕点O逆时针旋转150°后得到△ABO,则∠A1OC=150°﹣∠AOB11﹣2,0);1【点评】本题考查了坐标与图形变化﹣﹣旋转.解题时,注意分类讨论,以防错解.13.线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是.【考点】Q2:平移的性质.【专题】填空题【分析】根据平移的性质可知,线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′平行且相等.【解答】解:∵线段AB沿和它垂直的方向平移到A′B′,∴线段AB和线段A′B′的位置关系是平行且相等.故答案为:平行且相等.【点评】本题考查的是平移的性质,①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD三角形.分别平移到EF和EG的位置,则△EFG为【分析】利用平移的性质可以知∠B+∠C=∠EFG+∠EGF,然后根据三角形内角和定理在△EFG中求得∠FEG=90°.【解答】解:∵AB,CD分别平移到EF和EG的位置后,∠B的对应角是∠EFG,∠C的对应角是∠EGF,故答案是:直角.【点评】本题考查了平移的性质,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.15.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.【考点】R2:旋转的性质.【专题】填空题【分析】根据旋转的性质可得AB=AB′,∠BAB′=40°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.【解答】解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣40°)=70°,∵∠AC′B′=∠C=90°,【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.16.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是【分析】设点A到BC的距离为h,根据平移的性质用BC表示出AD、CE,然后【解答】解:设点A到BC的距离为h,则S=BC•h=5,ABC△∴四边形ACED的面积=(AD+CE)•h=(2BC+BC)•h=3×BC•h=3×5=15.故答案为:15.【点评】本题考查了平移的性质,三角形的面积,主要用了对应点间的距离等于平移的距离的性质.17.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.【考点】R7:坐标与图形变化﹣旋转.【专题】填空题【分析】画出旋转后的图形位置,根据图形求解.【解答】解:AB旋转后位置如图所示.B′(4,2).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.18.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.【考点】R2:旋转的性质;LB:矩形的性质.【专题】填空题【分析】根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的∠D′=∠性质得D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.【解答】解:如图,∴∠B=∠D=∠BAD=90°,∵∠1=∠2=110°,19.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是【分析】(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点O按逆时针方向旋转180°,得出对应点,即可得出△ABC,即为所求;(2)如图所示:△【点评】此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.20.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,2,固定△ABC,使△DEC绕点③线段DE与AC的位置关系是;②设△BDC的面积为S,△AEC的面积为S,则S1与S2的数量关系是.C旋转,当点D恰好落在AB边上时,填空:12(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S=S,请【分析】(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据性质可得∠ACD=60°,然三角形的性质可得AC=AD,再根据直角三角形30°角所一半求出AC=AB,然后求出AC=BD,再根据等边对的直角边等三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;(3)过点BE=DF1,然作DF2⊥BD,求出D作DF1∥BE,求出四边形BEDF是菱形,根据菱形的对边相等可得三角形的面积相等可知点求的点,过点F为所D11后根据等底等高的∠FDF2=60°,从而得到△1DFF是等边DF=DF2,三角形,然后求出121第74页(共137页)形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),故答案为:DE∥AC;S1=S2;,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;△D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,FFD=∠ABC=60°,∵BF1=DF1,∠12DFF是等边三角形,∵在△CDF1和△CDF2中,2∴BE=×4÷cos30°=2÷,或.第76页(共137页)【点评】本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键,(3)要注意符合条件的点F有两个.21.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,移n个单位(m>0,n>0).得到正方形A′B′C′D′及其内部的A、B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经应点F′与点F重合,求点F的坐标.【考点】9A:二元一次方程组的应用;Q3:坐标与图形变化﹣平移.【专题】解答题【分析】首先根据点A到A′,B到B′的点的坐标可得方程组;,解可得a、m、n的值,设F点的坐标为(x,y),点F′点F重合可列出方程组,再解可得F点坐标.【解答】解:由点A到A′,可得方程组;设F点的坐标为(x,y),点F′点F重合得到方程组,解得,即F(1,4).【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组.单元测试(四)一、选择题1.将下列多项式因式分解,结果中不含有因式(A.x2﹣4B.x3﹣4x2﹣12xC.x2﹣2xD.(x﹣3)2+2(x﹣3)+12.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+anB.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2x﹣2)的是()C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x3.把多项式a2﹣4a分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣44.下列等式从左到右的变形属于因式分解的是()A.x2﹣2x+1=(x﹣1)2B.ax﹣ay+a=a(x﹣y)+aC.x3﹣x=x(x+1)(x﹣1)+1D.x2﹣4+3x=(x+2)(x﹣2)+3x5.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4B.0C.﹣3D.﹣46.多项式x2﹣4分解因式的结果是()A.(x+2)(x﹣2)B.(x﹣2)C.(x+4)(x﹣4)D.x(x﹣4)27.把多项式m2﹣9m分解因式,结果正确的是()A.m(m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论