2022-2023学年安徽省安庆市潜山野寨中学高二数学文模拟试题含解析_第1页
2022-2023学年安徽省安庆市潜山野寨中学高二数学文模拟试题含解析_第2页
2022-2023学年安徽省安庆市潜山野寨中学高二数学文模拟试题含解析_第3页
2022-2023学年安徽省安庆市潜山野寨中学高二数学文模拟试题含解析_第4页
2022-2023学年安徽省安庆市潜山野寨中学高二数学文模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年安徽省安庆市潜山野寨中学高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A. B.6 C. D.12参考答案: C【考点】椭圆的简单性质.【分析】由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长.【解答】解:由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长为4a=,故选C【点评】本题主要考查数形结合的思想和椭圆的基本性质,难度中等2.△ABC内有一点P,且P为△ABC三条中线的交点,则点P为△ABC的()A.内心 B.外心 C.重心 D.垂心参考答案:C【考点】三角形五心.【分析】利用三角形重心定义求解.【解答】解:∵△ABC内有一点P,且P为△ABC三条中线的交点,∴由三角形重心定义知:点P为△ABC的重心.故选:C.3.甲、乙两名同学在5次体育测试中的成绩统计如下左图的茎叶图所示,若甲、乙两人的平均成绩分别是X甲、X乙,则下列结论正确的是()A.X甲<X乙;乙比甲成绩稳定

B.X甲>X乙;甲比乙成绩稳定C.X甲>X乙;乙比甲成绩稳定

D.X甲<X乙;甲比乙成绩稳定参考答案:AX甲=81X乙=86.84.已知点P在直径为2的球面上,过点P作球的两两相互垂直的三条弦PA,PB,PC,若,则的最大值为A. B.4 C. D.3参考答案:A【分析】由题意得出,设,,利用三角函数辅助角公式可得出的最大值.【详解】由于、、是直径为的球的三条两两相互垂直的弦,则,所以,设,,,其中为锐角且,所以,的最大值为,故选:A.【点睛】本题考查多面体的外接球,考查棱长之和的最值,在直棱柱或直棱锥的外接球中,若其底面外接圆直径为,高为,其外接球的直径为,则,充分利用这个模型去解题,可简化计算,另外在求最值时,可以利用基本不等式、柯西不等式以及三角换元的思想来求解。5.101(9)化为十进制数为()A.9 B.11 C.82 D.101参考答案:C【考点】进位制.【分析】利用累加权重法,即可将九进制数转化为十进制,从而得解.【解答】解:由题意,101(9)=1×92+0×91+1×90=82,故选:C.6.设满足约束条件,则的最大值为

)A.5

B.3

C.7

D.-8参考答案:C7.若圆上每个点的横坐标不变.纵坐标缩短为原来的,则所得曲线的方程是(

)A.

B.

C.

D.参考答案:C8.不等式的解集是

()A.[-5,7] B.(-∞,+∞)C.(-∞,-5)∪(7,+∞) D.[-4,6]参考答案:B【分析】利用绝对值三角不等式,得到,恒成立.【详解】恒成立.故答案选B【点睛】本题考查了解绝对值不等式,利用绝对值三角不等式简化了运算.9.若点P(3,-1)为圆(x-2)2+y2=25的弦AB的中点,则直线AB的方程为(A)x+y-2=0

(B)2x-y-7=0(C)2x+y-5=0

(D)x-y-4=0参考答案:D10.已知,为两条不同的直线,,为两个不同的平面,则下列命题中正确的是(

)A.

B.

C.

D.

参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.若圆x2+y2=4与圆x2+(y﹣3)2=r2(r>0)外切,则实数r的值为.参考答案:1略12.电视机的使用寿命与显像管开关的次数有关。某品牌的电视机的显像管开关了次还能继续使用的概率是,开关了次后还能继续使用的概率是,则已经开关了次的电视机显像管还能继续使用到次的概率是

。参考答案:13.复数(为虚数单位)的虚部是▲

参考答案:114.已知函数f(x)=,若函数y=f(f(x)﹣2a)有两个零点,则实数a的取值范围是.参考答案:?【考点】函数零点的判定定理.【分析】画出函数图象,令f(f(x)﹣2a)=0?f(x)﹣2a=﹣2或f(x)﹣2a=1,?f(x)=2a﹣2或f(x)=2a+1,由函数函数f(x)=的值域为R,可得f(x)=2a﹣2和f(x)=2a+1都至少有一个零点,要使函数y=f(f(x)﹣2a)有两个零点,必满足f(x)=2a﹣2和f(x)=2a+1各有一个零点.【解答】解:函数y=的定义域是(0,+∞),令y′>0,解得:0<x<e,令y′<0,解得:x>e,故函数y=在(0,e)递增,在(e,+∞)递减,故x=e时,函数y=取得最大值,最大值是,函数y=x2﹣4(x≤0)是抛物线的一部分.∴函数f(x)=的图象如下:令y=f(f(x)﹣2a)=0?f(x)﹣2a=﹣2或f(x)﹣2a=1,?f(x)=2a﹣2或f(x)=2a+1,∵函数函数f(x)=的值域为R,∴f(x)=2a﹣2和f(x)=2a+1都至少有一个零点,函数y=f(f(x)﹣2a)有两个零点,则必满足f(x)=2a﹣2和f(x)=2a+1各有一个零点.∵2a+1>2a﹣3,∴2a﹣2<﹣4且2a+1>?a∈?,故答案为?【点评】本题考查了利用数形结合的思想求解函数的零点问题,同时也考查了函数的单调性及分类讨论思想,属于难题.15.已知函数f(x)=mlnx+nx(m、,n∈R),曲线y=f(x)在点(1,f(1))处的切线方程为x﹣2y﹣2=0.(1)m+n=;(2)若x>1时,f(x)+<0恒成立,则实数k的取值范围是

.参考答案:考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,由f′(1)=得到m+n的值;利用函数在点(1,f(1))处的切线方程为x﹣2y﹣2=0求得m,n的值,得到函数f(x)的解析式,代入f(x)+<0并整理,构造函数g(x)=(x>1),利用导数求得g(x)>得答案.解答: 解:由f(x)=mlnx+nx(m、,n∈R),得,∴f′(1)=m+n,∵曲线y=f(x)在点(1,f(1))处的切线方程为x﹣2y﹣2=0,∴m+n=;由f′(1)=,f(1)=n,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣n=(x﹣1),即x﹣2y+2n﹣1=0.∴2n﹣1=﹣2,解得n=﹣.∴m=1.则f(x)=lnx﹣,f(x)+<0等价于lnx﹣+,即,令g(x)=(x>1),g′(x)=x﹣lnx﹣1,再令h(x)=x﹣lnx﹣1,,当x>1时h′(x)>0,h(x)为增函数,又h(1)=0,∴当x>1时,g′(x)>0,即g(x)在(1,+∞)上为增函数,∴g(x)>g(1)=.则k.故答案为:;(﹣∞,].点评:本题考查利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,考查数学转化思想方法,是中高档题.16.对于椭圆和双曲线有以下4个命题,其中正确命题的序号是

.①椭圆的焦点恰好是双曲线的顶点;

②双曲线的焦点恰好是椭圆的顶点;③双曲线与椭圆共焦点;

④椭圆与双曲线有两个顶点相同.参考答案:①②略17.抛物线上到直线的距离最短的点的坐标是

参考答案:(1,1)略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)某班从6名班干部中(其中男生4人,女生2人),任选3人参加学校的义务劳动.(1)设所选3人中女生人数为ξ,求ξ的分布列;(2)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(B)和P(B|A).参考答案:解:(1)ξ的所有可能取值为0,1,2,依题意,得P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.∴ξ的分布列为ξ012P

(2)P(B)===,P(B|A)===.略19.(本小题满分12分)已知函数,。(1)求在点处的切线方程;(2)证明:曲线与曲线有唯一公共点;(3)设,比较与的大小,并说明理由.参考答案:(1),则,点处的切线方程为:,(2)令,,则,,且,,因此,当时,,单调递减;当时,,单调递增.所以,所以在上单调递增,又,即函数有唯一零点,所以曲线与曲线有唯一公共点.20.已知抛物线与直线相交于A、B两点,点O是坐标原点.(Ⅰ)求证:OAOB;(Ⅱ)当△OAB的面积等于时,求t的值.参考答案:(I)见解析;(II)【分析】(Ⅰ)联立抛物线与直线方程,得到关于的一元二次方程,进而应用根与系数的关系即可证明OAOB;(Ⅱ)利用(Ⅰ)的结论,建立的方程,即可得到答案。【详解】(I)由,设,则.

(II)设与x轴交于E,则,∴,

解得:【点睛】本题考查直线与抛物线的位置关系,抛物线的性质的知识点,直线和抛物线的位置关系,可通过直线方程与抛物线方程组成的方程组的实数解的个数来确定,同时注意过焦点的弦的一些性质,属于中档题。21.(本小题满分13分)已知数列{an}满足Sn+an=2n+1.(1)写出a1,a2,a3,并推测an的表达式;(2)用数学归纳法证明所得的结论.参考答案:(1)a1=,a2=,a3=,

猜测an=2-

(2)①由(1)已得当n=1时,命题成立;

②假设n=k时,命题成立,即ak=2-,

当n=k+1时,a1+a2+……+ak+ak+1+ak+1=2(k+1)+1,

且a1+a2+……+ak=2k+1-ak

∴2k+1-ak+2ak+1=2(k+1)+1=2k+3, ∴2ak+1=2+2-,

ak+1=2-,

即当n=k+1时,命题成立.根据①②得n∈N+,an=2-都成立。22.在直角坐标系xOy中,曲线C1的参数方程为(为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求直线l与曲线C1公共点的极坐标;(2)设过点的直线交曲线C1于A,B两点,且AB的中点为P,求直线的斜率.参考答案:(1)直线与曲线C1公共点的极

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论