2021年浙江省宁波市东海舰队子女学校高一数学理模拟试卷含解析_第1页
2021年浙江省宁波市东海舰队子女学校高一数学理模拟试卷含解析_第2页
2021年浙江省宁波市东海舰队子女学校高一数学理模拟试卷含解析_第3页
2021年浙江省宁波市东海舰队子女学校高一数学理模拟试卷含解析_第4页
2021年浙江省宁波市东海舰队子女学校高一数学理模拟试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年浙江省宁波市东海舰队子女学校高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列关系式中正确的是A.

B.C.

D.参考答案:C略2.函数(>0且≠1)的图象必经过点(

)A.(3,4)B.(3,3)

C.(1,0)

D.(2,4)参考答案:A略3.在△ABC中,D是AC中点,延长AB至E,BE=AB,连接DE交BC于点F,则=()A.+ B.+ C.+ D.+参考答案:D【考点】平面向量的基本定理及其意义.【分析】根据条件得到F是三角形AEC的重心,利用重心的性质结合向量的三角形法则进行转化求解即可.【解答】解:∵D是AC中点,BE=AB,∴F是三角形AEC的重心,延长F交BC于G,则G是EC的中点,则==×(+)=+=+,故选:D【点评】本题主要考查向量的分解,根据向量的三角形法则,利用条件判断F是三角形AEC的重心是解决本题的关键.4.当我们停放自行车时,只要将自行车旁的撑脚放下,自行车就稳了,这用到了(

)A.三点确定一平面 B.不共线三点确定一平面C.两条相交直线确定一平面 D.两条平行直线确定一平面参考答案:B【分析】自行车前后轮与撑脚分别接触地面,使得自行车稳定,此时自行车与地面的三个接触点不在同一条线上.【详解】自行车前后轮与撑脚分别接触地面,此时三个接触点不在同一条线上,所以可以确定一个平面,即地面,从而使得自行车稳定.故选B项.【点睛】本题考查不共线的三个点确定一个平面,属于简单题.5.已知,且,则(

)A.

B.

C.

D.符号不定参考答案:A6.已知函数是偶函数,则(

)A.

k=0

B.

k=1

C.

k=4

D.k∈Z参考答案:B7.若角的终边经过点,则(

)A. B.C. D.参考答案:B【分析】利用三角函数的定义可得的三个三角函数值后可得正确的选项.【详解】因为角的终边经过点,故,所以,故选B.【点睛】本题考查三角函数的定义,属于基础题.8.如果圆上总存在点到原点的距离为3,则实数a的取值范围为(

)A. B. C. D.参考答案:B【分析】将圆上的点到原点的距离转化为圆心到原点的距离加减半径得到答案.【详解】,圆心为半径为1圆心到原点的距离为:如果圆上总存在点到原点的距离为即圆心到原点的距离即故答案选B【点睛】本题考查了圆上的点到原点的距离,转化为圆心到原点的距离加减半径是解题的关键.9.在R上定义的函数f(x)是偶函数,且f(x)=f(2﹣x).若f(x)在区间[1,2]上是减函数,则f(x)()A.在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是增函数B.在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是减函数C.在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是增函数D.在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是减函数参考答案:B【考点】偶函数.【分析】根据函数的性质,作出函数的草图,观察图象即可得答案.【解答】解:由f(x)=f(2﹣x)可知f(x)图象关于x=1对称,又∵f(x)为偶函数,∴f(x)=f(x﹣2)∴f(x)为周期函数且周期为2,结合f(x)在区间[1,2]上是减函数,可得f(x)草图.故选B.10.已知函数,则函数y=f[f(x)]﹣1的图象与x轴的交点个数为()A.3个 B.2个 C.0个 D.4个参考答案:A【考点】函数的图象.【分析】函数y=f[f(x)]﹣1的图象与x轴的交点个数即为f[f(x)]﹣1=0的解得个数,根据函数解析式的特点解得即可,【解答】解:y=f[f(x)]﹣1=0,即f[f(x)]=1,当f(x)+1=1时,即f(x)=0时,此时log2x=0,解得x=1,或x+1=0,解得x=﹣1,当log2f(x)=1时,即f(x)=2时,此时x+1=2,解得x=1(舍去),或log2x=2,解得x=4,综上所述函数y=f[f(x)]﹣1的图象与x轴的交点个数为3个,故选:A.【点评】此题考查的是函数于函数图象交点个数的问题.在解答的过程当中充分体现了函数与方程的思想、问题转化的思想.值得同学们体会反思.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,那么=.参考答案:【考点】函数的值.【专题】计算题;压轴题.【分析】根据所求关系式的形式可先求f(),然后求出f(x)+f()为定值,最后即可求出所求.【解答】解:∵,∴f()=∴f(x)+f()=1∴f(2)+f()=1,f(3)+f()=1,f(4)+f()=1,f(1)=∴=故答案为:【点评】本题主要考查了函数的值的求解,找出规律进行解题可简化计算,当项数较少时也可逐一进行求解,属于基础题.12.若f(1﹣x)=x2,则f(1)=.参考答案:0【考点】函数的值.【专题】函数的性质及应用.【分析】根据函数的解析式,进行转化即可.【解答】解:∵f(1﹣x)=x2,∴f(1)=f(1﹣0)=02=0,故答案为:0【点评】本题主要考查函数值的计算,比较基础.13.已知θ∈{α|α=kπ+(﹣1)k+1?,k∈Z},则角θ的终边所在的象限是

.参考答案:三,四【考点】G3:象限角、轴线角.【分析】对k分奇数与偶数讨论利用终边相同的角的集合的定义即可得出.【解答】解:当k=2n+1(n∈Z)时,α=(2n+1)π+,角θ的终边在第三象限.当k=2n(n∈Z)时,α=2nπ﹣,角θ的终边在第四象限.故答案为:三,四.14.(5分)函数在区间[0,n]上至少取得2个最大值,则正整数n的最小值是

.参考答案:8考点: 三角函数的周期性及其求法.专题: 计算题.分析: 先根据函数的解析式求得函数的最小正周期,进而依据题意可推断出在区间上至少有个周期.进而求得n≥6×,求得n的最小值.解答: 周期T==6在区间[0,n]上至少取得2个最大值,说明在区间上至少有个周期.6×=所以,n≥∴正整数n的最小值是8故答案为8点评: 本题主要考查了三角函数的周期性及其求法.考查了考生对三角函数周期性的理解和灵活利用.15.等差数列{an}的首项a1=1,且a2是a1和a6的等比中项,那么公差d=_________.参考答案:0或316.已知函f(x)=,则f(f())=.参考答案:【考点】分段函数的应用;函数的值;对数的运算性质.【分析】利用分段函数直接进行求值即可.【解答】解:由分段函数可知f()=,f(f())=f(﹣2)=.故答案为:.17.函数在上的最小值等于____________.参考答案:【分析】先利用化简函数解析式,再把函数转化成的形式,进而求最小值。【详解】∵∴当时,取得最小值-2.【点睛】本题主要考察三角函数的最值问题。涉及三角函数性质问题,需先利用转化公式:(其中),把函数化成形如的形式,从而求三角函数的性质.

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)?[f(x)+f(y)]>0.(1)判断f(x)的单调性,并加以证明;(2)解不等式;(3)若f(x)≤m2﹣2am+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求实数m的取值范围.参考答案:【考点】函数恒成立问题;奇偶性与单调性的综合.【分析】(1)设x1,x2∈[﹣1,1],且x1<x2,则x1﹣x2<0,利用x,y∈[﹣1,1],x+y≠0有(x+y)?[f(x)+f(y)]>0,可得f(x1)+f(﹣x2)<0,根据函数f(x)是定义在[﹣1,1]上的奇函数,即可得函数f(x)在[﹣1,1]上单调增;(2)由(1)知,,解之即可;(3)先确定函数f(x)在[﹣1,1]上的最大值为f(1)=1,将f(x)≤m2﹣2am+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立转化为:0≤m2﹣2am对所有a∈[﹣1,1]恒成立,从而可求实数m的取值范围.【解答】解:(1)函数f(x)在[﹣1,1]上单调增,证明如下由题意,设x1,x2∈[﹣1,1],且x1<x2则x1﹣x2<0∵x,y∈[﹣1,1],x+y≠0有(x+y)?[f(x)+f(y)]>0.令x=x1,y=﹣x2,∴f(x1)+f(﹣x2)<0∵函数f(x)是定义在[﹣1,1]上的奇函数∴f(x1)﹣f(x2)<0∴函数f(x)在[﹣1,1]上单调增;(2)由(1)知,,解得:(3)由于函数f(x)在[﹣1,1]上单调增,∴函数f(x)在[﹣1,1]上的最大值为f(1)=1∴f(x)≤m2﹣2am+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立可转化为:0≤m2﹣2am对所有a∈[﹣1,1]恒成立∴,解得m≥2或m≤﹣2或m=0【点评】本题以抽象函数的性质为载体,考查函数的单调性,考查单调性与奇偶性的结合,同时考查了恒成立问题,解题的关键是:f(x)≤m2﹣2am+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立转化为:0≤m2﹣2am对所有a∈[﹣1,1]恒成立19.(16分)设a为实数,记函数的最大值为g(a).(1)若,解关于求x的方程f(x)=1;(2)求g(a).参考答案:考点: 二倍角的正弦;两角和与差的正弦函数;三角函数的最值.专题: 三角函数的求值.分析: (1)当,由方程f(x)=1,可得sinxcosx+sinx+cosx=1.令t=sinx+cosx,则t2=1+2sinxcosx,方程可化为t2+2t﹣3=0,解得t=1,即sinx+cosx=1,即,由此求得x的值的集合.(2)由题意可得t的取值范围是,g(a)即为函数m(t)=at2+t﹣a,的最大值.直线是抛物线m(t)的对称轴,可分a>0、a=0、a<0三种情况,分别求得g(a).解答: (1)由于当,方程f(x)=1,即,即,所以,sinxcosx+sinx+cosx=1(1).…1分令t=sinx+cosx,则t2=1+2sinxcosx,所以.…3分所以方程(1)可化为t2+2t﹣3=0,解得t=1,t=﹣3(舍去).…5分所以sinx+cosx=1,即,解得所求x的集合为.…7分(2)令,∴t的取值范围是.由题意知g(a)即为函数m(t)=at2+t﹣a,的最大值,…9分∵直线是抛物线m(t)=at2+t﹣a的对称轴,∴可分以下几种情况进行讨论:①当a>0时,函数y=m(t),的图象是开口向上的抛物线的一段,由知m(t)在上单调递增,故g(a)==.…11分②当a=0时,m(t)=t,,有g(a)=;…12分③当a<0时,函数y=m(t),的图象是开口向下的抛物线的一段,若,即时,g(a)=,…13分若,即时,g(a)==.…15分综上所述,有.…16分.点评: 本题主要考查两角和差的三角公式、二倍角公式的应用,正弦函数的定义域和值域,二次函数的性质,体现了转化以及分类讨论的数学思想,属于中档题.20.已知数列的首项,且满足.(1)求证:数列为等差数列,并求数列的通项公式;(2)记,求数列的前项和为.参考答案:(1);(2)。21.(本题满分10分)已知函数f(x)=x+2ax+2,

x.(1)当a=-1时,求函数的单调递增区间与单调递减区间;(2)若y=f(x)在区间上是单调函数,求实数a的取值范围。参考答案:解:(1)当时,=…………1分

所以x时,函数的单调递减区间是,单调递增区间是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论