第二讲线性规划模型教材课件_第1页
第二讲线性规划模型教材课件_第2页
第二讲线性规划模型教材课件_第3页
第二讲线性规划模型教材课件_第4页
第二讲线性规划模型教材课件_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二讲线性规划模型统计与应用数学系张耀峰Themodeloflinearprogramming6/7/20231第二讲线性规划模型1.1优化的思想1.2什么是线性规划模型1.3如何使用Lingo软件求解线性规划问题1.4案例解析6/7/202321.1

优化的思想6/7/20233烧水小明同学,烧一壶水要8分钟,灌开水要1分钟,取牛奶和报纸要5分钟(不能间断),整理书包要6分钟(可间断),为了尽快做完这些事,怎样安排才能使时间最少?最少需要几分钟?

例1、如何安排早上的时间?取牛奶和报纸收拾书包灌水收拾书包5891206/7/20234例2、怎么排队才合理呢?

码头上现在同时有3艘货船需要卸货,但是只能一条一条地卸货,并且每艘船卸货所需的时间各不相同,分别为4小时、8小时和1小时。按照怎样的顺序卸货能使3艘货船等候的总时间最少呢?

6/7/20235方案卸货顺序船1的等候时间船2的等候时间船3的等候时间总的等候时间1船1—船2—船388+48+4+1332船1—船3—船288+1+48+1303船2—船1—船34+844+8+1294船2—船3—船14+1+844+1225船3—船1—船21+81+8+41236船3—船2—船11+4+81+41196/7/202361.2什么是线性规划模型6/7/20237例3运输问题6/7/20238解:设A1,A2调运到三个粮站的大米分别为x11,x12,

x13,

x21,

x22,

x23吨。题设量可总到下表:84库存量x23x22x21A2542需要量x13x12x11A1B3B2B1粮库粮站距离及运量121224308246/7/20239结合存量限制和需量限制得数学模型:目标函数约束条件决策变量6/7/2023101.3如何使用Lingo软件求解线性规划问题6/7/202311程序编写1model:min=12*x11+24*x12+8*x13+30*x21+12*x22+24*x23;x11+x12+x13<4;x21+x22+x23<8;x11+x21>2;x12+x22>4;x13+x23>5;end6/7/202312运行结果

Globaloptimalsolutionfound.Objectivevalue:160.0000Totalsolveriterations:5VariableValueReducedCostX112.0000000.000000X120.00000028.00000X132.0000000.000000X210.0000002.000000X224.0000000.000000X233.0000000.000000RowSlackorSurplusDualPrice1160.0000-1.00000020.00000016.0000031.0000000.00000040.000000-28.0000050.000000-12.0000060.000000-24.000006/7/202313

例4生产计划问题某工厂计划安排生产Ⅰ,Ⅱ两种产品,已知每种单位产品的利润,生产单位产品所需设备台时及A,B两种原材料的消耗,现有原材料和设备台时的定额如表所示,问:1)怎么安排生产使得工厂获利最大?2)产品Ⅰ的单位利润降低到1.8万元,要不要改变生产计划,如果降低到1万元呢?3)产品Ⅱ的单位利润增大到5万,要不要改变生产计划4)如果产品Ⅰ,Ⅱ的单位利润同时降低了1万元,要不要改变生产计划?

产品Ⅰ产品Ⅱ最大资源量设备128台时原材料A4016kg原材料B0412kg单位产品利润236/7/2023146/7/202315程序编写model:title生产计划问题;[maxf]max=2*x1+3*x2;[A]x1+2*x2<8;[B]4*x1<16;[TIME]4*x2<12;END6/7/202316运行结果

ModelTitle:生产计划问题

VariableValueReducedCostX14.0000000.000000X22.0000000.000000RowSlackorSurplusDualPriceMAXF14.000001.000000A0.0000001.500000B0.0000000.1250000TIME4.0000000.000000

对问题1,安排是生产产品Ⅰ4单位,产品Ⅱ2单位,最大盈利为14万元。6/7/202317线性模型-敏感性分析要使用敏感性分析必须要在这里选择Prices&Ranges然后保存退出路径:LINGO︱Options︱GeneralSolver(通用求解程序)选项卡6/7/202318要调出敏感性分析的结果,必须先求解后再在程序窗口下点击LINGO|Range,

6/7/202319Rangesinwhichthebasisisunchanged:ObjectiveCoefficientRanges

CurrentAllowableAllowableVariableCoefficientIncreaseDecreaseX12.000000INFINITY0.5000000X23.0000001.0000003.000000

RighthandSideRangesRowCurrentAllowableAllowableRHSIncreaseDecreaseA8.0000002.0000004.000000B16.0000016.000008.000000TIME12.00000INFINITY4.000000

当前变量系数允许增加量允许减少量6/7/202320对问题4,因为两个系数同时改变了,所以只有更改程序的数据,重新运行得:不改变生产计划,但是最大利润降低到6万元.

对问题2,产品Ⅰ的单位利润降低到1.8万元,在(1.5,∞)之间,所以不改变生产计划。如果降低到1万元,不在(1.5,∞)内,要改变生产计划。在程序中将目标函数的系数“2”改为“1”,可得新的计划为安排是生产产品Ⅰ2单位,产品Ⅱ3单位,最大盈利为11万元.对问题3,要改变生产计划,更改程序得新计划为生产产品Ⅰ2单位,产品Ⅱ3单位,最大盈利为19万元.6/7/202321例5

加工奶制品的生产计划1桶牛奶3公斤A1

12小时8小时4公斤A2

或获利24元/公斤获利16元/公斤50桶牛奶时间480小时至多加工100公斤A1

制订生产计划,使每天获利最大

35元可买到1桶牛奶,买吗?若买,每天最多买多少?可聘用临时工人,付出的工资最多是每小时几元?

A1的获利增加到30元/公斤,应否改变生产计划?每天:6/7/2023221桶牛奶3公斤A1

12小时8小时4公斤A2

或获利24元/公斤获利16元/公斤x1桶牛奶生产A1

x2桶牛奶生产A2

获利24×3x1

获利16×4x2

原料供应

劳动时间

加工能力

决策变量

目标函数

每天获利约束条件非负约束

线性规划模型(LP)时间480小时至多加工100公斤A1

50桶牛奶每天6/7/202323模型求解

OBJECTIVEFUNCTIONVALUE

1)3360.000

VARIABLEVALUEREDUCEDCOST

X120.0000000.000000

X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000NO.ITERATIONS=220桶牛奶生产A1,30桶生产A2,利润3360元。max=72*x1+64*x2;x1+x2<50;12*x1+8*x2<480;3*x1<100;6/7/202324模型求解

reducedcost值表示当该非基变量增加一个单位时(其他非基变量保持不变)目标函数减少的量(对max型问题)

OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000NO.ITERATIONS=26/7/202325OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000

ROW

SLACKORSURPLUSDUALPRICES

2)0.00000048.000000

3)0.0000002.0000004)40.0000000.000000原料无剩余时间无剩余加工能力剩余40max72x1+64x2st2)x1+x2<503)12x1+8x2<4804)3x1<100end三种资源结果解释

6/7/202326OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES

2)0.00000048.000000

3)0.0000002.000000

4)40.0000000.000000结果解释

最优解下“资源”增加1单位时“效益”的增量原料增1单位,利润增48时间加1单位,利润增2能力增减不影响利润影子价格

35元可买到1桶牛奶,要买吗?35<48,应该买!聘用临时工人付出的工资最多每小时几元?2元!6/7/202327RANGESINWHICHTHEBASISISUNCHANGED:

OBJCOEFFICIENTRANGES

VARIABLECURRENTALLOWABLEALLOWABLECOEFINCREASEDECREASE

X172.00000024.0000008.000000X264.0000008.00000016.000000RIGHTHANDSIDERANGESROWCURRENTALLOWABLEALLOWABLERHSINCREASEDECREASE250.00000010.0000006.6666673480.00000053.33333280.0000004100.000000INFINITY40.000000最优解不变时目标系数允许变化范围DORANGE(SENSITIVITY)ANALYSIS?

Yesx1系数范围(64,96)

x2系数范围(48,72)

A1获利增加到30元/千克,应否改变生产计划x1系数由243=72增加为303=90,在允许范围内不变!(约束条件不变)结果解释

6/7/202328结果解释

RANGESINWHICHTHEBASISISUNCHANGED:OBJCOEFFICIENTRANGESVARIABLECURRENTALLOWABLEALLOWABLECOEFINCREASEDECREASEX172.00000024.0000008.000000X264.0000008.00000016.000000

RIGHTHANDSIDERANGESROWCURRENTALLOWABLEALLOWABLERHSINCREASEDECREASE250.00000010.0000006.6666673480.00000053.33333280.0000004100.000000INFINITY40.000000影子价格有意义时约束右端的允许变化范围原料最多增加10时间最多增加53

35元可买到1桶牛奶,每天最多买多少?最多买10桶?(目标函数不变)6/7/2023291.4案例分析6/7/202330例6阶段生产问题某公司生产某产品,最大生产能力为10000单位,每单位存储费2元,预定的销售量与单位成本如下:月份单位成本(元)销售量1234

706000

71

70008012000766000求一生产计划,使1)满足需求;2)不超过生产能力;3)成本(生产成本与存储费之和)最低.6/7/202331解:假定1月初无库存,4月底卖完,当月生产的不库存,库存量无限制.第j+1个月的库存量第j+1个月的库存费共3个月的库存费到本月总生产量大于等于销售量4个月总生产量等于总销售量4个月总生产成本6/7/202332model:title

生产计划程序1;Sets:yuefen/1..4/:c,x,e,d;endsetsdata:c=70718076;d=60007000120006000;e=2222;a=10000;enddatamin=@sum(yuefen:c*x)+

@sum(yuefen(j)|j#lt#4:

@sum(yuefen(i)|i#le#j:x-d)*e(j+1));@for(yuefen(j)|j#lt#4:

@sum(yuefen(i)|i#le#j:x)>@sum(yuefen(i)|i#le#j:d));@sum(yuefen:x)=@sum(yuefen:d);@for(yuefen:x<a);end

6/7/202333露天矿里铲位已分成矿石和岩石:平均铁含量不低于25%的为矿石,否则为岩石。每个铲位的矿石、岩石数量,以及矿石的平均铁含量(称为品位)都是已知的。每个铲位至多安置一台电铲,电铲平均装车时间5分钟卡车在等待时所耗费的能量也是相当可观的,原则上在安排时不应发生卡车等待的情况。例7、露天矿生产的车辆安排(CUMCM-2003B)

矿石卸点需要的铁含量要求都为29.5%1%(品位限制),搭配量在一个班次(8小时)内满足品位限制即可。卸点在一个班次内不变。卡车载重量为154吨,平均时速28km,平均卸车时间为3分钟。问题:出动几台电铲,分别在哪些铲位上;出动几辆卡车,分别在哪些路线上各运输多少次?6/7/202334平面示意图6/7/202335问题数据距离铲位1铲位2铲位3铲位4铲位5铲位6铲位7铲位8铲位9铲位10矿石漏5.265.194.214.002.952.742.461.900.641.27倒装Ⅰ1.900.991.901.131.272.251.482.043.093.51岩场5.895.615.614.563.513.652.462.461.060.57岩石漏0.641.761.271.832.742.604.213.725.056.10倒装Ⅱ4.423.863.723.162.252.810.781.621.270.50铲位1铲位2铲位3铲位4铲位5铲位6铲位7铲位8铲位9铲位10矿石量0.951.051.001.051.101.251.051.301.351.25岩石量1.251.101.351.051.151.351.051.151.351.25铁含量30%28%29%32%31%33%32%31%33%31%6/7/202336问题分析与典型的运输问题明显有以下不同:这是运输矿石与岩石两种物资的问题;属于产量大于销量的不平衡运输问题;为了完成品位约束,矿石要搭配运输;产地、销地均有单位时间的流量限制;运输车辆只有一种,每次满载运输,154吨/车次;铲位数多于铲车数意味着要最优的选择不多于7个产地作为最后结果中的产地;最后求出各条路线上的派出车辆数及安排。近似处理:先求出产位、卸点每条线路上的运输量(MIP模型)然后求出各条路线上的派出车辆数及安排6/7/202337模型假设卡车在一个班次中不应发生等待或熄火后再启动的情况;在铲位或卸点处由两条路线以上造成的冲突问题面前,我们认为只要平均时间能完成任务,就认为不冲突。我们不排时地进行讨论;空载与重载的速度都是28km/h,耗油相差很大;卡车可提前退出系统,等等。如理解为严格不等待,难以用数学规划模型来解个别参数队找到了可行解(略)6/7/202338符号xij

:从i铲位到j号卸点的石料运量(车)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论