



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初一下册数学证明题假如有,证明如下:
证明:连接BE、FE,
由于DB⊥AC,点E是CD的中点,
所以在Rt△CBD中,BE=CE=DE,
又由于CF⊥AD,点E是CD的中点,
所以在Rt△CFD中,EF=CE=DE,
则BE=EF,则△BEF为等腰三角形,
又由于点G为BF的中点,
所以EG⊥BF,
即EG是BF上的垂线。
2
.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z
证明;过E点分别作AB,BC上的高交AB,BC于M,N点.
过F点分别作AC,BC上的高交于P,Q点.
依据角平分线上的点到角的2边距离相等可以知道FQ=FP,EM=EN.
过D点做BC上的高交BC于O点.
过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.
则X=DO,Y=HY,Z=DJ.
由于D是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD
同理可证FP=2DJ。
又由于FQ=FP,EM=EN.
FQ=2DJ,EN=2HD。
又由于角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN
又由于
FQ=2DJ,EN=2HD。所以DO=HD+JD。
由于X=DO,Y=HY,Z=DJ.所以x=y+z。
2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请赐予证明;若不成立,请说明理由。
当∠BON=108°时。BM=CN还成立
证明;如图5连结BD、CE.
在△BCI)和△CDE中
∵BC=CD,∠BCD=∠CDE=108°,CD=DE
∴ΔBCD≌ΔCDE
∴BD=CE,∠BDC=∠CED,∠DBC=∠CEN
∵∠CDE=∠DEC=108°,∴∠BDM=∠CEN
∵∠OBC+∠ECD=108°,∠OCB+∠OCD=108°
∴∠MBC=∠NCD
又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECN
∴ΔBDM≌ΔCNE∴BM=CN
3.三角形ABC中,AB=AC,角A=58°,AB的垂直平分线交AC与N,则角NBC=()
3°
由于AB=AC,∠A=58°,所以∠B=61°,∠C=61°。
由于AB的垂直平分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN
所以∠NBD=58°,所以∠NBC=61°-58°=3°
4.在正方形ABCD中,P,Q分别为BC,CD边上的点。且角PAQ=45°,求证:PQ=PB+DQ
延长CB到M,使BM=DQ,连接MA
∵MB=DQAB=AD∠ABM=∠D=RT∠
∴三角形AMB≌三角形AQD
∴AM=AQ∠MAB=∠DAQ
∴∠MAP=∠MAB+∠PAB=45度=∠PAQ
∵∠MAP=∠PAQ
AM=AQAP为公共边
∴三角形AMP≌三角形AQP
∴MP=PQ
∴MB+PB=PQ
∴PQ=PB+DQ
5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,BP⊥MC于点P,求证DP⊥NP
∵直角△BMP∽△CBP
∴PB/PC=MB/BC
∵MB=BN
正方形BC=DC
∴PB/PC=BN/CD
∵∠PBC=∠PCD
∴△PBN∽△PCD
∴∠BPN=∠CPD
∵BP⊥MC
∴∠BPN+∠NPC=90°
∴∠CPD+∠NPC=90°
∴DP⊥NP
3
1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的.距离分别为x,y,z,求证:x=y+z
证明;过E点分别作AB,BC上的高交AB,BC于M,N点.
过F点分别作AC,BC上的高交于P,Q点.
依据角平分线上的点到角的2边距离相等可以知道FQ=FP,EM=EN.
过D点做BC上的高交BC于O点.
过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.
则X=DO,Y=HY,Z=DJ.
由于D是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD
同理可证FP=2DJ。
又由于FQ=FP,EM=EN.
FQ=2DJ,EN=2HD。
又由于角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN
又由于
FQ=2DJ,EN=2HD。所以DO=HD+JD。
由于X=DO,Y=HY,Z=DJ.所以x=y+z。
2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请赐予证明;若不成立,请说明理由。
当∠BON=108°时。BM=CN还成立
证明;如图5连结BD、CE.
在△BCI)和△CDE中
∵BC=CD,∠BCD=∠CDE=108°,CD=DE
∴ΔBCD≌ΔCDE
∴BD=CE,∠BDC=∠CED,∠DBC=∠CEN
∵∠CDE=∠DEC=108°,∴∠BDM=∠CEN
∵∠OBC+∠ECD=108°,∠OCB+∠OCD=108°
∴∠MBC=∠NCD
又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECN
∴ΔBDM≌ΔCNE∴BM=CN
3.三角形ABC中,AB=AC,角A=58°,AB的垂直平分线交AC与N,则角NBC=()
3°
由于AB=AC,∠A=58°,所以∠B=61°,∠C=61°。
由于AB的垂直平分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN
所以∠NBD=58°,所以∠NBC=61°-58°=3°
4.在正方形ABCD中,P,Q分别为BC,CD边上的点。且角PAQ=45°,求证:PQ=PB+DQ
延长CB到M,使BM=DQ,连接MA
∵MB=DQAB=AD∠ABM=∠D=RT∠
∴三角形AMB≌三角形AQD
∴AM=AQ∠MAB=∠DAQ
∴∠MAP=∠MAB+∠PAB=45度=∠PAQ
∵∠MAP=∠PAQ
AM=AQAP为公共边
∴三角形AMP≌三角形AQP
∴MP=PQ
∴MB+PB=PQ
∴PQ=PB+DQ
5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,BP⊥MC于点P,求证DP⊥NP
∵直角△BMP∽△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘棠镇中心小学数学试卷
- 延安振华学校教师招聘笔试真题2024
- 2025年基层医疗卫生机构信息化建设中的健康大数据应用报告
- 分享高考数学试卷
- 公务员考试行测数学试卷
- 2025年储能技术多元化在储能系统行业产业链协同中的应用报告
- 2025年文旅融合趋势下乡村振兴战略下的乡村旅游发展报告
- 逻辑认知培训课件教案
- 2025年医疗健康行业健康险产品设计与创新研究报告
- 2025年工业互联网平台软件定义网络SDN性能优化实战指南报告
- 2025年高考山东卷化学试题讲评及备考策略指导(课件)
- 2025年中国失重秤市场调查研究报告
- 师德师风校长培训
- 城市轨道交通机电技术专业教学标准(高等职业教育专科)2025修订
- 《智能机器人技术与应用》高职人工智能工业机器人专业全套教学课件
- 学校展厅改造方案(3篇)
- 上海虹口区2024-2025学年下学期七年级期末考试英语试题(含答案无听力原文及音频)
- 2024年江苏省徐州市保安员证考试题库及答案()
- 2025年江西省中考数学试卷真题(含标准答案)
- 2025年物联网技术在智能养老中的老人健康监测与生活服务保障报告
- 天台保安考试题及答案
评论
0/150
提交评论