




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
27.2.3相似三角形应用举例东莞市石排中学郑志强相似三角形应用举例
金字塔是世界建筑奇迹之一,据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,以此来测量金字塔的高度.例1如图,木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度BO.=134(m).解:太阳光是平行的光线,因此∠BAO=∠EDF.又∠AOB=∠DFE=90°,∴△ABO∽△DEF.∴,因此金字塔的高度为134m.相似三角形应用举例练习1
在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为90m,这栋楼的高度是多少?△ABC∽△A'B'C'求得A'C'=54m答:这栋高楼的高度是54m.解:ABC1.8m3mA'B'C'90m?相似三角形应用举例标题练习2小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高AB?BDCAE答:塔高30米.解:∵∠DEC=∠ABC=90°
F∠DCE=∠ACB
∴△DEC∽△ABC例2如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.解:∵∠PQR=∠PST=90°,∠P=∠P,PQ×90=(PQ+45)×60解得:PQ=90.∴△PQR∽△PST因此,河宽大约为90m.相似三角形应用举例即:PQRSTab相似三角形应用举例练习3.如图,测得BD=120m,DC=60m,EC=50m,求河宽AB.解:∵AB∥CEADBEC∴△ABD∽△ECDAB=100m.
答:河宽AB为100m.例5已知左、右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m.一个身高1.6m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?分析:如图,设观察者眼睛的位置为点F,画出观察者的水平视线FG,它交AB、CD于点H、K.视线FA、FG的夹角∠CFK是观察点F时的仰角.由于树的遮挡,区域Ⅰ和Ⅱ都在观察者看不到的区域(盲区)之内.HK仰角视线水平线AC相似三角形应用举例解:如图,假设观察者从左向右走到点E时,他的眼睛的位置点F与两棵树顶端点A、C恰在一条直线上.由题意可知,AB⊥l,CD⊥l∴AB∥CD,△AFH∽△CFK即解得FH=8由此可知,如果观察者继续前进,当他与左边的树的距离小于8m时,由于这棵树的遮挡,右边树的顶端点C在观察者的盲区之内,观察者看不到它.相似三角形应用举例
对于现实中的一些实际问题如测量高度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度电视剧导演聘用合同书(古装战争)
- 2025年度个人出租车承包运营管理及车辆更新合同
- 2025年吉林工业职业技术学院单招职业适应性测试题库及答案1套
- 健康管理融资居间合同
- 2025年度教育培训借款居间服务合同协议书
- 2025年度农村别墅装修与设施配套合同
- 2025年度房屋租赁权转让及租赁保证金合同协议书
- 历史建筑保护扶梯改造合同
- 2025年度协议离婚孩子抚养权及父母子女法律咨询服务合同
- 2025年度员工股份激励与股权激励评估协议
- 起重装卸机械操作工国家职业技能标准(2018年版)
- 叉车装卸区域安全风险告知牌
- 五年级下册美术课件-第2课 新街古韵丨赣美版
- 《普通生物学教案》word版
- 秦荻辉科技英语写作教程练习答案(共42页)
- GB∕T 41168-2021 食品包装用塑料与铝箔蒸煮复合膜、袋
- 部编版语文一年级下册绘本阅读课-优质课件.pptx
- 新人教版九年级全一册物理知识点填空题汇编
- 人教版五年级数学下册每个单元教材分析(共九个单元)
- 办好高水平民办高中的哲学思考-教育文档
- 小学生如何理解句子的含义(课堂PPT)
评论
0/150
提交评论