版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.一个多边形的内角和与外角和相等,则这个多边形的边数为()A.8 B.6 C.5 D.42.如图,在正方形中,分别以点,为圆心,长为半径画弧,两弧相交于点,连接,得到,则与正方形的面积比为()A.1:2 B.1:3 C.1:4 D.3.关于抛物线与的说法,不正确的是()A.与的顶点关于轴对称B.与的图像关于轴对称C.向右平移4个单位可得到的图像D.绕原点旋转可得到的图像4.如图,在中,点是边上一点,,过点作交于,若是等腰三角形,则下列判断中正确的是()A. B. C. D.5.如图,在直角坐标系中,一次函数的图象与正比例函数的图象交于点,一次函数的图象为,且,,能围成三角形,则在下列四个数中,的值能取的是()A.﹣2 B.1 C.2 D.36.如图,∠ABC=∠ADC=Rt∠,E是AC的中点,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2大小关系不能确定7.下列各因式分解的结果正确的是()A. B.C. D.8.如图是甲、乙两名运动员正式比赛前的5次训练成绩的折线统计图,你认为成绩较稳定的是()A.甲 B.乙C.甲、乙的成绩一样稳定 D.无法确定9.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.510.下列变形是因式分解的是()A.x(x+1)=x2+x B.m2n+2n=n(m+2)C.x2+x+1=x(x+1)+1 D.x2+2x﹣3=(x﹣1)(x+3)二、填空题(每小题3分,共24分)11.设甲组数:,,,的方差为,乙组数是:,,,的方差为,则与的大小关系是_______(选择“>”、“<”或“=”填空).12.在菱形ABCD中,E为AB的中点,OE=3,则菱形ABCD的周长为.13.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为_____.14.李明同学进行射击练习,两发子弹各打中5环,四发子弹各打中8环,三发子弹各打中9环.一发子弹打中10环,则他射击的平均成绩是________环.15.如图,直线与轴正半轴交于点,与轴交于点,将沿翻折,使点落在点处,点是线段的中点,射线交线段于点,若为直角三角形,则的值为__________.16.把直线向上平移2个单位得到的直线解析式为:_______.17.某水池容积为300m3,原有水100m3,现以xm3/min的速度匀速向水池中注水,注满水需要ymin,则y关于x的函数表达式为________.18.方程在实数范围内的解是________.三、解答题(共66分)19.(10分)如图,函数的图象与函数的图象交于点,.(1)求函数的表达式;(2)观察图象,直接写出不等式的解集;(3)若点是轴上的动点,当周长最小时,求点的坐标.20.(6分)如图,已知直线与直线相交于点.(1)求、的值;(2)请结合图象直接写出不等式的解集.21.(6分)如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.22.(8分)某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均每株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.(1)若每盆增加x株,平均每盆盈利y元,写出y关于x的函数表达式;(2)要使每盆的盈利为10元,且每盆植入株数尽可能少,问每盆应植入多少株?23.(8分)如图,E、F分别为△ABC的边BC、CA的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB=AC,试说明四边形AEBD是矩形.24.(8分)年“双十—”来临之际,某网点以每件元的价格购进件衬衫以每件元的价格迅速售罄,所以该网店第二个月再次购进一批同款衬衫迎接“双十一”,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的倍,该批衬衫仍以每件元销售,十二月十二日下午六点,商店对剩余的件衬衫以每件的价格一次性清仓销售,商店出售这两批衬衫共盈利元,设第二批衬衫进价的增长率为.(1)第二批衬衫进价为____________元,购进的数量为_____________件.(都用含的代数式表示)(2)求的值.25.(10分)如图,抛物线与轴交于,(在的左侧),与轴交于点,抛物线上的点的横坐标为3,过点作直线轴.(1)点为抛物线上的动点,且在直线的下方,点,分别为轴,直线上的动点,且轴,当面积最大时,求的最小值;(2)过(1)中的点作,垂足为,且直线与轴交于点,把绕顶点旋转45°,得到,再把沿直线平移至,在平面上是否存在点,使得以,,,为顶点的四边形为菱形?若存在直接写出点的坐标;若不存在,说明理由.26.(10分)由中宣部建设的“学习强国”学习平台正式上线。这是推动新时代中国特色社会主义思想、推进马克思主义学习型政党和学习型社会建设的创新举措.某基层党组织随机抽取了部分党员的某天的学习成绩并进行了整理,分成5个小组(表示成绩,单位:分,且),根据学习积分绘制出部分频数分布表和部分频数分布直方图,其中第2、第5两组测试成绩人数直方图的高度比为,请结合下列图标中相关数据回答下列问题:学习积分频数分布表组别成绩分频数频率第1组5第2组第3组1530%第4组10第5组(1)填空:_____,______;(2)补全频数分布直方图;(3)这次积分的中位数落在第______组;(4)已知该党组织共有党员225人;请估计当天学习积分获得“优秀”等级()的党员有多少人?
参考答案一、选择题(每小题3分,共30分)1、D【解析】
利用多边形的内角和与外角和公式列出方程,然后解方程即可.【详解】设多边形的边数为n,根据题意
(n-2)•180°=360°,
解得n=1.
故选:D.【点睛】本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.2、C【解析】
由作图可得知△BEC是等边三角形,可求出∠ABE=30°,进而可求出△ABE边AB上的高,再根据三角形和正方形的面积公式求出它们的面积比即可.【详解】根据作图知,BE=CE=BC,∴△BEC是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠ABE=∠ABC-∠EBC=90°-60°=30°,设AB=BC=a,过点E作EF⊥AB于点F,如图,则EF=BE=a,∴.故选C.【点睛】此题主要考查了等边三角形的判定以及正方形的性质,熟练掌握有关性质是解题的关键.3、D【解析】
利用对称变换和平移变换法则,分析两条抛物线的位置关系,即可做出选择..【详解】解:A,与,当纵坐标相同,横坐标互为相反数,故正确;B,与,当纵坐标相同,横坐标互为相反数,故正确;C,与的对称轴分别为x=-2和x=2,故正确;D,绕原点旋转,只是开口方向发生变化,故D错误;故答案为D.【点睛】本题考查的知识点是二次函数的图象和性质,其中熟练的掌握给定函数解析式求顶点坐标,对称轴方程和开口方向的方法,是解答的关键.4、B【解析】
根据等腰三角形的性质得到根据垂直的性质得到根据等量代换得到又即可得到根据同角的余角相等即可得到.【详解】,,从而是等腰三角形,,故选:B.【点睛】考查等腰三角形的性质,垂直的性质,三角形的内角和定理,掌握同角的余角相等是解题的关键.5、C【解析】
把M(m,3)代入一次函数y=-2x+5得到M(1,3),求得l2的解析式为y=3x,根据l1,l2,l3能围成三角形,l1与l3,l3与l2有交点且一次函数y=kx+2的图象不经过M(1,3),于是得到结论.【详解】解:把M(m,3)代入一次函数y=-2x+5得,可得m=1,
∴M(1,3),
设l2的解析式为y=ax,
则3=a,
解得a=3,
∴l2的解析式为y=3x,
∵l1,l2,l3能围成三角形,
∴l1与l3,l3与l2有交点且一次函数y=kx+2的图象不经过M(1,3),
∴k≠3,k≠-2,k≠1,
∴k的值能取的是2,
故选C.【点睛】本题考查了两直线平行或相交问题,一次函数图象及性质;熟练掌握函数解析式的求法,直线平行的条件是解题的关键.6、B【解析】
试题分析:根据直角三角形斜边上的中线等于斜边的一半,可以证明DE=BE,再根据等腰三角形的性质即可解答.解:∵∠ABC=∠ADC=90°,E是AC的中点,∴DE=AC,BE=AC,∴DE=BE,∴∠1=∠1.故选B.考点:直角三角形斜边上的中线;等腰三角形的判定与性质.7、C【解析】
将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】=a(a+1)(a-1),故A错误;,故B错误;,故C正确;不能分解因式,故D错误,故选:C.【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.8、A【解析】
观察图象可知:甲的波动较小,成绩较稳定.【详解】解:从图得到,甲的波动较小,甲的成绩稳定.故选:A.【点睛】本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9、B【解析】
当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.10、D【解析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】A、是整式的乘法,故A错误;B、等式不成立,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.【点睛】此题考查因式分解的意义,解题关键在于掌握其定义二、填空题(每小题3分,共24分)11、【解析】
根据方差的意义进行判断.【详解】因为甲组数有波动,而乙组的数据都相等,没有波动,所以>.故答案为:>.【点睛】此题考查方差,解题关键在于掌握方差的意义.12、1.【解析】试题分析:根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线等于第三边的一半求出AD,然后根据菱形的周长进行计算即可得解.解:在菱形ABCD中,OB=OD,∵E为AB的中点,∴OE是△ABD的中位线,∵OE=3,∴AD=2OE=2×3=6,∴菱形ABCD的周长为4×6=1.故答案为1.考点:菱形的性质.13、4.8cm.【解析】
根据菱形的性质可得AB=5cm,根据菱形的面积公式可得S菱形ABCD=AC•BD=AB•DH,即DH==4.8cm.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8cm.【点睛】本题考查了菱形的边长问题,掌握菱形的性质、菱形的面积公式是解题的关键.14、7.9【解析】分析:根据平均数的定义进行求解即可得.详解:由题意得:故答案为点睛:本题考查了算术平均数,熟练掌握算术平均数的定义是解题的关键.15、-1【解析】
根据一次函数解析式可得B点坐标为(0,),所以得出OB=,再由为直角三角形得出∠ADE为直角,结合是直角三角形斜边的中点进一步得出∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,所以△AOB为等腰直角三角形,所以OA长度为,进而得出A点坐标,将其代入解析式即可得出k的值.【详解】由题意得:B点坐标为(0,),∴OB=,∵在直角三角形AOB中,点是线段的中点,∴OD=BD=AD,又∵为直角三角形,∴∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,∴△AOB为等腰直角三角形,∴OA=OB=,∴A点坐标为(,0),∴,解得k=-1.故答案为:-1.【点睛】本题主要考查了一次函数与三角形性质的综合运用,熟练掌握相关概念是解题关键.16、【解析】
直接根据一次函数图象与几何变换的有关结论求解.【详解】直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.故答案为y=2x+2.【点睛】此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质17、y=【解析】
先根据条件算出注满容器还需注水200m3,根据注水时间=容积÷注水速度,据此列出函数式即可.【详解】解:容积300m3,原有水100m3,还需注水200m3,由题意得:y=.【点睛】本题考查了反比例函数的实际应用,理清实际问题中的等量关系是解题的关键.18、【解析】
由,得,根据立方根定义即可解答.【详解】解:由,得,,故答案为:.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.三、解答题(共66分)19、(1);(2)或;(3)点的坐标为.【解析】
(1)先把A(1,a),B(b,2)分别代入y=-2x+8中求出a、b的值得到A(1,6),B(3,2),然后把A点坐标代入中得到k的值,从而得到反比例函数解析式;
(2)写出一次函数图象在反比例函数图像上方所对应的自变量的范围即可;
(3)作点A关于y轴的对称点A′,连接BA′交y轴于P,如图,则A′(-1,6),根据两点之间线段最短判断此时PA+PB的值最小,△ABP周长最小,然后利用待定系数法求出直线A′B的解析式,从而得到点P的坐标.【详解】解:(1)把,分别代入得,,解得,∴,;把代入得,∴反比例函数解析式为;(2)不等式的解集为或;(3)作点关于轴的对称点,连接交轴于,如图,则,∵,∴此时的值最小,周长最小,设直线的解析式为,把,代入得,解得,∴直线的解析式为,∴点的坐标为.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.20、(1),;(2).【解析】
(1)把点P的坐标分别代入l1与l2的函数关系式,解方程即可;(2)利用函数图象,写出直线在直线的上方所对应的自变量的范围即可.【详解】解:(1)因为点P是两条直线的交点,所以把点分别代入与中,得,,解得,.(2)当时,的图象在的上面,所以,不等式的解集是.【点睛】本题考查了一次函数的交点问题和一次函数与一元一次不等式的关系,读懂图象,弄清一次函数图象的交点与解析式的关系和一次函数与一元一次不等式的关系是解题的关键.21、y=﹣x或y=﹣x.【解析】
根据直线y=x+4的解析式可求出A、B两点的坐标,当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,作CF⊥OA于F,CE⊥OB于E,可分别求出△AOB与△AOC的面积,再根据其面积公式可求出两直线交点的坐标,从而求出其解析式;当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,同(1).【详解】解:直线l的解析式为:y=kx,对于直线y=x+4的解析式,当x=0时,y=4,y=0时,x=﹣4,∴A(﹣4,0)、B(0,4),∴OA=4,OB=4,∴S△AOB=×4×4=8,当直线l把△AOB的面积分为S△AOC:S△BOC=2:3时,S△AOC=,作CF⊥OA于F,CE⊥OB于E,∴×AO•CF=,即×4×CF=,∴CF=.当y=时,x=﹣,则=﹣k,解得,k=﹣,∴直线l的解析式为y=﹣x;当直线l把△ABO的面积分为S△AOC:S△BOC=3:2时,同理求得CF=,解得直线l的解析式为y=﹣x.故答案为y=﹣x或y=﹣x.【点睛】本题考查的是待定系数法求一次函数的解析式,掌握待定系数法求一次函数解析式的一般步骤是解题的关键,涉及到三角形的面积公式及分类讨论的方法.22、(1)y=﹣2.5x2+1.5x+9;(2)4株【解析】
(1)设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为(3﹣2.5x)元,根据“每盆盈利=每盆花苗株数×单株盈利”,列函数式即可;(2)由题(1)得“每盆花苗株数×单株盈利=1”,解一元二次方程,在两根中取较小正整数就为增加的株数,则每盆的株数可求.【详解】(1)解:由题意知:每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣2.5x)元,则:y=(x+3)(3﹣2.5x)=﹣2.5x2+1.5x+9(2)解:由题意得:(x+3)(3﹣2.5x)=1.化简,整理得x2﹣3x+2=2.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:每盆应植4株.【点睛】本题考查一元二次方程的应用,解题关键在于读懂题意列出方程.23、(1)证明见解析;(2)证明见解析【解析】
(1)由已知可得:EF是△ABC的中位线,则可得EF∥AB,EF=AB,又由DF=EF,易得AB=DE,根据有一组对边平行且相等的四边形是平行四边形,即可证得四边形ABED是平行四边形;(2)由(1)可得四边形AECD是平行四边形,又由AB=AC,AB=DE,易得AC=DE,根据对角线相等的平行四边形是矩形,可得四边形AECD是矩形.【详解】解:(1)∵E、F分别为△ABC的边BC、CA的中点,∴EF∥AB,EF=AB,∵DF=EF,∴EF=DE,∴AB=DE,∴四边形ABED是平行四边形;(2)∵DF=EF,AF=CF,∴四边形AECD是平行四边形,∵AB=AC,AB=DE,∴AC=DE,∴四边形AECD是矩形.或∵DF=EF,AF=CF,∴四边形AECD是平行四边形,∵AB=AC,BE=EC,∴∠AEC=90°,∴四边形AECD是矩形.【点睛】本题考查矩形的判定及平行四边形的判定,掌握判定方法正确推理论证是解题关键.24、(1),;(2)【解析】
(1)根据题意列出对应的代数式即可.(2)根据题意列出方程,求解即可.【详解】(1)由题意得,第二批衬衫进价为元,购进的数量为件.故答案为:;.(2)第一批利润:(元),第二批利润:(元),,整理得,(舍)增长率为【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.25、(1)(2),,,【解析】
(1)根据题意求得点、、、的坐标,进而求得直线和直线解析式.过点作轴垂线交于点,设点横坐标为,即能用表示、的坐标进而表示的长.由得到关于的二次函数,即求得为何值时面积最大,求得此时点坐标.把点向上平移的长,易证四边形是平行四边形,故有.在直线的上方以为斜边作等腰,则有.所以,其中的长为定值,易得当点、、在同一直线上时,线段和的值最小.又点是动点,,由垂线段最短可知过点作的垂线段时,最短.求直线、解析式,联立方程组即求得点坐标,进而求得的长.(2)先求得,,的坐标,可得是等腰直角三角形,当绕逆时针旋转再沿直线平移可得△,根据以,,,为顶点的四边形为菱形,可得,,,,即可求得的坐标,当绕顺时针旋转再沿直线平移可得△,根据以,,,为顶点的四边形为菱形,可得,,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业并购合同:并购对象、并购价格明确规定3篇
- 二零二四年度加工承揽合同:汽车零部件批量生产3篇
- 二零二四年度租赁合同标的物业管理服务协议2篇
- 商业街2024年度电子商务平台运营合同2篇
- 2024年度版权转让合同属性详细说明2篇
- 2024年度融资租赁合同租赁物所有权及使用权规定2篇
- 2024年度企业市场调研与咨询服务合同2篇
- 2024年度电子商务平台合作投资合同3篇
- 2024年度企业资源管理系统优化合同2篇
- 二手电动车买卖合同涉及的财务审计服务(2024版)2篇
- 小学三年级上册道德与法治课件-8.安全记心上(平安出行)-部编版-(13张)ppt课件
- 水泥土搅拌桩试桩情况总结报告
- 砂子合格证#精选
- 手拉葫芦安全检查表(共1页)
- 新初一分班考试-英语真题10页
- 2020年廉江地方志
- 调取证据通知书
- 码头工程安全生产文明施工措施
- 风湿性心脏病二尖瓣狭窄伴关闭不全;全心衰pbl教学
- 外墙装饰劈开砖施工专项方案1
- 人教版英语选择性必修第四册UNIT 4 Sharing中英文对照
评论
0/150
提交评论