版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
郭氏数学内部资料PAGEPAGE4切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。7.与圆有关的比例线段定理图形已知 结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD.连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB.用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。【典型例题】例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。图1解:由切线长定理知:AF=AB=1,EF=CE设CE为x,在Rt△ADE中,由勾股定理∴,,例6.如图5,AB为⊙O的直径,弦CD∥AB,AE切⊙O于A,交CD的延长线于E。图5求证:证明:连结BD,∵AE切⊙O于A,∴∠EAD=∠ABD∵AE⊥AB,又AB∥CD,∴AE⊥CD∵AB为⊙O的直径∴∠ADB=90°∴∠E=∠ADB=90°∴△ADE∽△BAD∴∴∵CD∥AB∴AD=BC,∴例7.如图6,PA、PC切⊙O于A、C,PDB为割线。求证:AD·BC=CD·AB图6点悟:由结论AD·BC=CD·AB得,显然要证△PAD∽△PBA和△PCD∽△PBC证明:∵PA切⊙O于A,∴∠PAD=∠PBA又∠APD=∠BPA,∴△PAD∽△PBA∴同理可证△PCD∽△PBC∴∵PA、PC分别切⊙O于A、C∴PA=PC∴∴AD·BC=DC·AB例8.如图7,在直角三角形ABC中,∠A=90°,以AB边为直径作⊙O,交斜边BC于点D,过D点作⊙O的切线交AC于E。图7求证:BC=2OE。点悟:由要证结论易想到应证OE是△ABC的中位线。而OA=OB,只须证AE=CE。证明:连结OD。∵AC⊥AB,AB为直径∴AC为⊙O的切线,又DE切⊙O于D∴EA=ED,OD⊥DE∵OB=OD,∴∠B=∠ODB在Rt△ABC中,∠C=90°-∠B∵∠ODE=90°∴∴∠C=∠EDC∴ED=EC∴AE=EC∴OE是△ABC的中位线∴BC=2OE一、选择题1.已知:PA、PB切⊙O于点A、B,连结AB,若AB=8,弦AB的弦心距3,则PA=()A.B.C.5D.82.下列图形一定有内切圆的是()A.平行四边形B.矩形C.菱形D.梯形3.已知:如图1直线MN与⊙O相切于C,AB为直径,∠CAB=40°,则∠MCA的度数()图1A.50°B.40°C.60°D.55°4.圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1:4,则另一弦长为()A.8cmB.10cmC.12cmD.16cm5.在△ABC中,D是BC边上的点,AD,BD=3cm,DC=4cm,如果E是AD的延长线与△ABC的外接圆的交点,那么DE长等于()A.B.C.D.6.PT切⊙O于T,CT为直径,D为OC上一点,直线PD交⊙O于B和A,B在线段PD上,若CD=2,AD=3,BD=4,则PB等于()A.20B.10C.5D.二、填空题7.AB、CD是⊙O切线,AB∥CD,EF是⊙O的切线,它和AB、CD分别交于E、F,则∠EOF=_____________度。8.已知:⊙O和不在⊙O上的一点P,过P的直线交⊙O于A、B两点,若PA·PB=24,OP=5,则⊙O的半径长为_____________。9.若PA为⊙O的切线,A为切点,PBC割线交⊙O于B、C,若BC=20,,则PC的长为_____________。10.正△ABC内接于⊙O,M、N分别为AB、AC中点,延长MN交⊙O于点D,连结BD交AC于P,则_____________。三、解答题11.如图2,△ABC中,AC=2cm,周长为8cm,F、K、N是△ABC与内切圆的切点,DE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南文理学院《单片机原理及应用》2023-2024学年第一学期期末试卷
- 湖南科技学院《心理学》2022-2023学年第一学期期末试卷
- 我的家乡贵州铜仁
- 八年级生物开学摸底考(山东专用)(解析版)
- 2024年街道社区度计划生育工作述职报告
- 2024至2030年中国锦涤纺布行业投资前景及策略咨询研究报告
- 2024至2030年中国纳米自洁西装行业投资前景及策略咨询研究报告
- 2024至2030年中国汽轮机旁路系统阀门行业投资前景及策略咨询研究报告
- 2024至2030年高炉成套设备项目投资价值分析报告
- 2024至2030年锦纶透明线项目投资价值分析报告
- 《中国宪法》 第十八章 选举制度
- 培训差距分析报告
- 软件管理系统产品报价单模板(详细)
- 2023年11月湖北宜昌市林业和园林局所属事业单位公开遴选工作人员考试甄选常考点(难、易错点集合)附带答案详解
- 储层地质学(中国石油大学)-3储层的主要物理性质
- 第17课《昆明的雨》课件(共22张)语文八年级上册
- 国民经济行业分类与代码
- 教学设备安装调试方案投标方案
- 第8课 隋唐政治演变与民族交融
- 教职工心理辅导记录
- 哈尔滨工业大学高等数学期末考试试卷(含答案)
评论
0/150
提交评论