山东省枣庄树人中学2022-2023学年数学八年级第二学期期末联考试题含解析_第1页
山东省枣庄树人中学2022-2023学年数学八年级第二学期期末联考试题含解析_第2页
山东省枣庄树人中学2022-2023学年数学八年级第二学期期末联考试题含解析_第3页
山东省枣庄树人中学2022-2023学年数学八年级第二学期期末联考试题含解析_第4页
山东省枣庄树人中学2022-2023学年数学八年级第二学期期末联考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若2019个数、、、…、满足下列条件:,,,…,,则(

)A.-5047 B.-5045 C.-5040 D.-50512.下列各组长度的线段中,可以组成直角三角形的是()A.1,2,3 B.1,,3 C.5,6,7 D.5,12,133.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=ADC.AB=AF D.BE=AD﹣DF4.下面哪个点在函数的图象上()A. B. C. D.5.如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为()A.12 B.3+3 C.6+3 D.66.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线 B.三边垂直平分线C.三条中线 D.三条高7.数据0,1,2,3,x的平均数是2,则这组数据的方差是()A.2 B. C.10 D.8.如果一个三角形的三边长分别为6,a,b,且(a+b)(a-b)=36,那么这个三角形的形状为()A.锐角三角形 B.钝角三角形C.直角三角形 D.等边三角形9.下列各式由左边到右边的变形中,属于分解因式的是()A. B.C. D.10.如图所示,DE是△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为()A. B.4 C. D.111.在下列图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.12.下列计算错误的是A. B.C. D.二、填空题(每题4分,共24分)13.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为_______.14.下列函数的图象(1),(2),(3),(4)不经过第一象限,且随的增大而减小的是__________.(填序号)15.如图,Rt△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于点D,分别过点A作AE∥BC,过点B作BE∥AD,AE与BE相交于点E.若CD=2,则四边形ADBE的面积是_____.16.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则an=__________(用含n的代数式表示).所剪次数1234…n正三角形个数471013…an17.如图,四边形是正方形,点在上,绕点顺时针旋转后能够与重合,若,,试求的长是__________.18.如图,在平行四边形ABCD中,以顶点A为圆心,AD长为半径,在AB边上截取AE=AD,用尺规作图法作出∠BAD的角平分线AG,若AD=5,DE=6,则AG的长是_________________.三、解答题(共78分)19.(8分)如图,已知四边形为正方形,点为对角线上的一动点,连接,过点作,交于点,以为邻边作矩形,连接.(1)求证:矩形是正方形;(2)判断与之间的数量关系,并给出证明.20.(8分)如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;(4)连结PG,当PG∥AB时,请直接写出t的值.21.(8分)某服装店用6000元购进一批衬衫,以60元/件的价格出售,很快售完,然后又用13500元购进同款衬衫,购进数量是第一次的2倍,购进的单价比上一次每件多5元,服装店仍按原售价60元/件出售,并且全部售完.(1)该服装店第一次购进衬衫多少件?(2)将该服装店两次购进衬衫看作一笔生意,那么这笔生意是盈利还是亏损?求出盈利(或亏损)多少元?22.(10分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=1.(1)求∠ADC的度数;(2)求四边形ABCD的面积.23.(10分)如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.24.(10分)如图,是边长为2的等边三角形,将沿直线平移到的位置,连接.(1)求平移的距离;(2)求的长.25.(12分)已知:如图,在正方形ABCD中,E为DC上一点,AF平分∠BAE且交BC于点F.

求证:BF+DE=AE.26.已知:一次函数的图像经过点A(-1,2)和点B(0,4).(1)求这个一次函数的表达式;(2)请你画出平面直角坐标系,并作出本题中的一次函数的图像.

参考答案一、选择题(每题4分,共48分)1、A【解析】

通过前面几个数的计算,根据数的变化可得出从第3个数开始,按-2,-3依次循环,按此规律即可得出的值,【详解】解:依题意,得:,,,,,,……由上可知,这2019个数从第三个数开始按−2,−3依次循环,故这2019个数中有1个2,1个−7,1009个−2,1008个−3,∴=2−7−2×1009−3×1008=−5047,故选:A.【点睛】本题主要考查了规律型:数字的变化类,找到规律是解题的关键.2、D【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【详解】A、12+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;

B、12+()2≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;

C、52+62≠72,根据勾股定理的逆定理不是直角三角形,故此选项错误;

D、52+122=132,根据勾股定理的逆定理是直角三角形,故此选项正确.

故选:D.【点睛】此题考查勾股定理的逆定理,解题关键在于在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3、B【解析】A.由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故A正确;B.∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故B错误;C.由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故C正确;D.由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故D正确;故选B.4、B【解析】

把各点坐标代入解析式即可求解.【详解】A.,y=4×1-2=2≠-2,故不在直线上;B.,y=4×3-2=10,故在直线上;C.,y=4×0.5-2=0,故不在直线上;D.,y=4×(-3)-2=-14,故不在直线上.故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知坐标的代入求解.5、C【解析】

利用垂直平分线的性质可得∠DAB=∠B=15°,可得∠ADC=30°,易得AD=BD=2AC,CD=AC,然后根据BC=BD+CD可得出结果.【详解】解:∵AB的垂直平分线l交BC于点D,∴AD=DB,∴∠B=∠DAB=15°,∴∠ADC=30°,∵∠C=90°,AC=3,∴AD=6=BD,CD=3.∴BC=BD+CD=6+3.故选:C.【点睛】本题主要考查了垂直平分线的性质、含30°直角三角形的性质以及勾股定理,综合运用各性质定理是解答此题的关键.6、B【解析】试题分析:根据线段垂直平分线上的点到两端点的距离相等解答.解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选B.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.7、A【解析】试题分析:先根据平均数公式求得x的值,再根据方差的计算公式求解即可.解:由题意得,解得所以这组数据的方差故选A.考点:平均数,方差点评:本题属于基础应用题,只需学生熟练掌握方差的计算公式,即可完成.8、C【解析】

先根据平方差公式对已知等式进行化简,再根据勾股定理的逆定理进行判定即可.【详解】解:∵(a+b)(a-b)=36,∴,∴,∴三角形是直角三角形,故选C.【点睛】本题主要考查了勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.9、B【解析】

根据分解因式的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解,逐一判定即可.【详解】A选项,不属于分解因式,错误;B选项,属于分解因式,正确;C选项,不属于分解因式,错误;D选项,不能确定是否为0,错误;故选:B.【点睛】此题主要考查对分解因式的理解,熟练掌握,即可解题.10、A【解析】根据DE为△ABC的中位线可得DE=BC=4,再根据∠AFB=90°,即可得到DF=AB=,从而求得EF=DE-DF=.故选A.点睛:此题主要考查了三角形的中位线,解答本题的关键是熟练掌握三角形的中位线平行于第三边,且等于第三边的一半;直角三角形斜边上的中线等于斜边的一半.11、C【解析】

根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A.不是轴对称图形,是中心对称图形,不合题意;B.是轴对称图形,不是中心对称图形,不合题意;C.是轴对称图形,也是中心对称图形,符合题意;D.不是轴对称图形,是中心对称图形,不合题意,故选C.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12、A【解析】

根据根式的计算法则逐个识别即可.【详解】A错误,;B.,正确;C.,正确D.,正确故选A.【点睛】本题主要考查根式的计算,特别要注意算术平方根的计算.二、填空题(每题4分,共24分)13、(﹣1,﹣1)【解析】试题解析:点B的横坐标为1-2=-1,纵坐标为3-4=-1,所以点B的坐标是(-1,-1).【点睛】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.14、(1)【解析】

根据一次函数的增减性与各项系数的关系逐一判断即可.【详解】解:(1)中,因为-1<0,所以随的增大而减小,且经过二、四象限,故符合题意;(2)中,因为1>0,所以随的增大而增大,故不符合题意;(3),因为-2<0,所以随的增大而减小,但经过一、二、四象限,故不符合题意;(4)中,因为1>0,所以随的增大而增大,故不符合题意.故答案为:(1).【点睛】此题考查的是一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.15、【解析】

过D作DF⊥AB于F,根据角平分线的性质得出DF=CD=2.由△ABC是等腰直角三角形得出∠ABC=45°,再证明△BDF是等腰直角三角形,求出BD=DF=2,BC=2+2=AC.易证四边形ADBE是平行四边形,得出AE=BD=2,然后根据平行四边形ADBE的面积=BDAC,代入数值计算即可求解.【详解】解:如图,过D作DF⊥AB于F,∵AD平分∠BAC,∠C=90°,∴DF=CD=2.∵Rt△ABC中,∠C=90°,AC=BC,∴∠ABC=45°,∴△BDF是等腰直角三角形,∵BF=DF=2,BD=DF=2,∴BC=CD+BD=2+2,AC=BC=2+2.∵AE//BC,BE⊥AD,∴四边形ADBE是平行四边形,∴AE=BD=2,∴平行四边形ADBE的面积=.故答案为.【点睛】本题考查了平行四边形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质,平行四边形的面积.求出BD的长是解题的关键.16、3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题解析:故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.17、.【解析】

由正方形的性质得出AB=AD=3,∠ABC=∠D=∠BAD=90°,由勾股定理求出AP,再由旋转的性质得出△ADP≌△ABP′,得出AP′=AP=,∠BAP′=∠DAP,证出△PAP′是等腰直角三角形,得出PP′=AP,即可得出结果.【详解】解:∵四边形ABCD是正方形,∴AB=AD=3,DP=1,∠ABC=∠D=∠BAD=90°,∴AP=,∵△ADP旋转后能够与△ABP′重合,∴△ADP≌△ABP′,∴AP′=AP=,∠BAP′=∠DAP,∴∠PAP′=∠BAD=90°,∴△PAP′是等腰直角三角形,∴PP′=AP=;故答案为:.【点睛】本题考查了旋转的性质、勾股定理、全等三角形的性质、等腰直角三角形的性质;熟练掌握正方形和旋转的性质是解决问题的关键.18、1【解析】

首先证明线段AG与线段DE互相垂直平分,利用勾股定理求出AH即可解决问题;【详解】解:分别以D和E作为圆心,以略长于EH的长度为半径作弧,交于点F,连接AF并延长,交CD于G,则AG即为∠BAD的角平分线,设AG交BD于H,则AG垂直平分线线段DE(等腰三角形三线合一),∴DH=EH=3,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AGD=∠GAB,∵∠DAG=∠GAB,∴∠DAG=∠DGA,∴DA=DG,∵DE⊥AG,∴AH=GH(等腰三角形三线合一),在Rt△ADH中,AH=,∴AG=2AH=1,故答案为1.【点睛】本题考查作图-复杂作图、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题;三、解答题(共78分)19、(1)详见解析;(2),理由详见解析.【解析】

作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEM≌△FEM,则有DE=EF即可;根据四边形的性质即全等三角形的性质即可证明,即可得在中,则【详解】证明:(1)过作于点,过作于点,如图所示:正方形,,,且,四边形为正方形四边形是矩形,,.,又,在和中,,,矩形为正方形,(2)矩形为正方形,,四边形是正方形,,,,在和中,,,,在中,,【点睛】本题考查正方形的判定与性质,解题关键在于证明.20、(1)25;(2)能,t=;(3),;(4)和【解析】

(1)根据中位线的性质求解即可;(2)能,连结,过点作于点,由四边形为矩形,可知过的中点时,把矩形分为面积相等的两部分,此时,通过证明,可得,再根据即求出t的值;(3)分两种情况:①当点在上时;②当点在上时,根据相似的性质、线段的和差关系列出方程求解即可;(4)(注:判断可分为以下几种情形:当时,点下行,点上行,可知其中存在的时刻;此后,点继续上行到点时,,而点却在下行到点再沿上行,发现点在上运动时不存在;当时,点,均在上,也不存在;由于点比点先到达点并继续沿下行,所以在中存在的时刻;当时,点,均在上,不存在.【详解】解:(1)∵D,F分别是AC,BC的中点∴DF是△ABC的中位线∴(2)能.连结,过点作于点.由四边形为矩形,可知过的中点时,把矩形分为面积相等的两部分.(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时.∵∴∵∴∴∵∴∵F是BC的中点∴∴.故.(3)①当点在上时,如图1.,,由,得.∴.②当点在上时,如图2.已知,从而,由,,得.解得.(4)和.(注:判断可分为以下几种情形:当时,点下行,点上行,可知其中存在的时刻;此后,点继续上行到点时,,而点却在下行到点再沿上行,发现点在上运动时不存在;当时,点,均在上,也不存在;由于点比点先到达点并继续沿下行,所以在中存在的时刻;当时,点,均在上,不存在.)【点睛】本题考查了三角形的动点问题,掌握中位线的性质、相似三角形的性质以及判定定理、平行线的性质以及判定定理、解一元一次方程的方法是解题的关键.21、(1)该服装店第一次购进衬衫150件.(2)这笔生意共盈利7500元.【解析】分析:(1)设该服装店第一次购进衬衫x件,根据题目中的“第二次每件进价比第一次多5元”可得出相等关系,列方程求解即可;(2)用第一次的利润+第二次的利润,和是正数表示盈利.详解:(1)设该服装店第一次购进衬衫x件.由题意得:解得:x=150,经检验:x=150是原方程的解.答:该服装店第一次购进衬衫150件.(2)第一次购进的单价为6000÷150=40(元/件)第二次的购进数量为:150×2=300(件)第二次购进的单价为:40+5=45(元/件)这笔生意的利润为:(60-40)×150+(60-45)×300=7500(元)答:这笔生意共盈利7500元.点睛:本题考查的是分式方程的应用,正确分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22、(1)150°;(2)【解析】

(1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.【详解】(1)连接BD,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ADB=60°,DB=4,∵42+12=(4)2,∴DB2+CD2=BC2,∴∠BDC=90°,∴∠ADC=60°+90°=150°;(2)过B作BE⊥AD,∵∠A=60°,AB=4,∴BE=AB•sin60°=4×=2,∴四边形ABCD的面积为:AD•EB+DB•CD=×4×2+×4×1=4+2.23、(1)见解析;(2)【解析】

(1)连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的切线;(2)由∠ACD的度数求出∠OCA为60°,确定出三角形AOC为等边三角形,由半径为2求出AC的长,在直角三角形ACD中,由30度所对的直角边等于斜边的一半求出AD的长,再利用勾股定理求出CD的长,由扇形AOC面积减去三角形AOC面积求出弓形的面积,再由三角形ACD面积减去弓形面积即可求出阴影部分面积.【详解】(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵∠DAC=∠BAC,∴∠DAC=∠OCA,∴AD∥OC,∵AD⊥EF,∴OC⊥EF,则EF为圆O的切线;(2)∵∠ACD=30°,∠ADC=90°,∴∠CAD=∠OCA=60°,∴△AOC为等边三角形,∴AC=OC=OA=2,在Rt△ACD中,∠ACD=30°,∴AD=AC=1,根据勾股定理得:CD=,∴S阴影=S△ACD-(S扇

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论