广东省汕头市潮南区博崇实验学校2023年数学八下期末统考模拟试题含解析_第1页
广东省汕头市潮南区博崇实验学校2023年数学八下期末统考模拟试题含解析_第2页
广东省汕头市潮南区博崇实验学校2023年数学八下期末统考模拟试题含解析_第3页
广东省汕头市潮南区博崇实验学校2023年数学八下期末统考模拟试题含解析_第4页
广东省汕头市潮南区博崇实验学校2023年数学八下期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.为了调查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和众数分别是()A.11,11 B.12,11 C.13,11 D.13,162.如图,在中,的平分线交于,若,,则的长度为()A. B. C. D.3.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=-5 B.=+5 C.=8x-5 D.=8x+54.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,35.函数自变量的值可以是()A.-1 B.0 C.1 D.26.已知一次函数y=kx﹣k(k≠0),y随x的增大而增大,则该函数的图象大致是()A. B.C. D.7.某区为了解5600名初中生的身高情况,抽取了300名学生进行身高测量.在这个问题中,样本是()A.300 B.300名学生 C.300名学生的身高情况 D.5600名学生的身高情况8.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若分式方程=2+有增根,则a的值为()A.4 B.2 C.1 D.010.若3x>﹣3y,则下列不等式中一定成立的是()A.x>y B.x<y C.x﹣y>0 D.x+y>0二、填空题(每小题3分,共24分)11.如果点A(1,m)在直线y=-2x+1上,那么m=___________.12.计算__________.13.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是_________________.14.已知反比例函数,当时,y的取值范围是________.15.如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是_____.16.据统计,2008年上海市常住人口数量约为18884600人,用科学计数法表示上海市常住人口数是___________.(保留4个有效数字)17.如图,▱ABCD中,∠ABC=60°,AB=4,AD=8,点E,F分别是边BC,AD的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是______.18.关于x的方程=1的解是正数,则m的取值范围是________

.三、解答题(共66分)19.(10分)某学生本学期6次数学考试成绩如下表所示:成绩类别第一次月考第二次月考期中第三次月考第四次月考期末成绩/分105110108113108112(1)6次考试成绩的中位数为,众数为.(2)求该生本学期四次月考的平均成绩.(3)如果本学期的总评成绩按照月考平均成绩占20﹪、期中成绩占30﹪、期末成绩占50﹪计算,那么该生本学期的数学总评成绩是多少?20.(6分)已知,,求下列代数式的值:(1)x2+y2;(2).21.(6分)已知,矩形中,,的垂直平分线分别交于点,垂足为.(1)如图1,连接,求证:四边形为菱形;(2)如图2,动点分别从两点同时出发,沿和各边匀速运动一周,即点自停止,点自停止.在运动过程中,①已知点的速度为每秒,点的速度为每秒,运动时间为秒,当四点为顶点的四边形是平行四边形时,则____________.②若点的运动路程分别为(单位:),已知四点为顶点的四边形是平行四边形,则与满足的数量关系式为____________.22.(8分)如图,边长为的正方形中,对角线相交于点,点是中点,交于点,于点,交于点.(1)求证:≌;(2)求线段的长.23.(8分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.(1)求的值;(2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n的取值范围.24.(8分)先化简,再求值:,其中是中的一个正整数解.25.(10分)已知:如图,在□ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,过点F作FG⊥BF交BC的延长线于点G.(1)求证:四边形ABEF是菱形;(2)如果AB=2,∠BAD=60°,求FG的长.26.(10分)是正方形的边上一动点(不与重合),,垂足为,将绕点旋转,得到,当射线经过点时,射线与交于点.求证:;在点的运动过程中,线段与线段始终相等吗?若相等请证明;若不相等,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

众数是出现次数最多的数,中位数是把数据从小到大排列位置处于中间的数;【详解】将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,中位数为:13;数据16出现的次数最多,故众数为16.故选:D.【点睛】此题考查中位数,众数,解题关键在于掌握其定义.2、B【解析】

由角平分线的定义和平行四边形的性质可求得∠ABE=∠AEB,易得AB=AE.【详解】解:∵四边形ABCD为平行四边形,∴AB=CD=3,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,故选:B.【点睛】本题主要考查平行四边形的性质,利用平行线的性质和角平分线的定义求得∠ABE=∠AEB是解题的关键.3、B【解析】

根据题意知:8x的倒数+5=3x的倒数,据此列出方程即可.【详解】根据题意,可列方程:=+5,故选B.【点睛】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找到3x的倒数与8x的倒数间的等量关系,列出方程.4、D【解析】分析:欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.详解:A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.故选D.点睛:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、C【解析】

根据分母不能等于零,可得答案.【详解】解:由题意,得,解得,故选:C.【点睛】本题考查了函数自变量的取值范围,利用分母不能等于零得出不等式是解题关键.6、B【解析】

一次函数的图象与性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.当b>0时,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴.【详解】∵一次函数y=kx﹣k,y随x增大而增大,∴k>0,﹣k<0,∴此函数的图象经过一、三、四象限.故选B.【点睛】本题主要考查了一次函数的图象与性质,熟练掌握一次函数的图像与系数的关系式解答本题的关键.7、C【解析】

根据样本的定义即可判断.【详解】依题意可知样本是300名学生的身高情况故选C.【点睛】此题主要考查统计分析,解题的关键是熟知样本的定义.8、C【解析】

根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.【详解】∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限,不经过第三象限.故选C.【点睛】本题考查了一次函数图象与系数的关系.解答本类型题目时,根据函数系数的正负确定函数图象经过的象限是关键.9、A【解析】

分式方程无解有两种可能,一种是转化为的整式方程本身没有解,一种是整式方程的解使分式方程的分母为0.【详解】原式可化为,因为分式方程无解,即等式不成立或无意义,当时,方程无意义,代入求得.【点睛】理解无解的含义是解题的关键.10、D【解析】

利用不等式的性质由已知条件可得到x+y>1,从而得到正确选项.【详解】∵3x>﹣3y,∴3x+3y>1,∴x+y>1.故选:D.【点睛】本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于1进行分类讨论.二、填空题(每小题3分,共24分)11、-1.【解析】

将x=1代入m=-2x+1可求出m值,此题得解.【详解】解:当x=1时,m=-2×1+1=-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.12、【解析】

将化成最简二次根式,再合并同类二次根式.【详解】解:故答案为:【点睛】本题考查了二次根式的运算,运用二次根式的乘除法法则进行二次根式的化简是解题的关键.13、m>1【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.考点:一次函数图象与几何变换.14、【解析】

利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.【详解】∵k=1>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=1,当x=2时,y=5,∴当1<x<2时,5<y<1.故答案为.【点睛】本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.15、x>1.【解析】把点P(m,1)代入y=1x﹣3即可得1m-3=1,解得m=1,所以点P的坐标为(1,1),观察图象可得不等式1x﹣3>kx+b的解集是x>1.16、1.888×【解析】

先用用科学记数法表示为:的形式,然后将保留4位有效数字可得.【详解】18884600=1.88846×≈1.888×故答案为:1.888×【点睛】本题考查科学记数法,注意科学记数法还可以表示较小的数,表示形式为:.17、4+4【解析】连接EF,点E、F分别是边BC、AD边的中点,可知BE=AF=AB=4,可证四边形ABEF为菱形,根据菱形的性质可知AE⊥BF,且AE与BF互相平分,∠ABC=60°,△ABE为等边三角形,ME=F=4,由勾股定理求MF,根据菱形的性质可证四边形MENF为矩形,再求四边形ENFM的周长.解:连接EF,∵点E、F分别是边BC、AD边的中点,∴BE=AF=AB=4,又AF∥BE,∴四边形ABEF为菱形,由菱形的性质,得AE⊥BF,且AE与BF互相平分,∵∠ABC=60°,∴△ABE为等边三角形,ME=F=4,在Rt△MEF中,由勾股定理,得MF=,由菱形的性质,可知四边形MENF为矩形,∴四边形ENFM的周长=2(ME+MF)=4+4.故答案为4+418、m<﹣2且m≠﹣1【解析】

首先根据=1,可得x=-m-2;然后根据关于x的方程=1的解是正数,求出m的取值范围即可.【详解】∵=1,∴x=-m-2,∵关于x的方程=1的解是正数,∴-m-2>0,解得m<-2,又∵x=-m-2≠2,∴m≠-1,∴m的取值范围是:m<-2且m≠-1.故答案为:m<-2且m≠-1.【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.三、解答题(共66分)19、(1)109,1.(2)109;(3)110.2【解析】

(1)把6个数从小到大排列,按照中位数、众数的概念即可得出结论;

(2)把平时测试成绩相加,再求出其平均数即可;

(3)取4次月考成绩平均分的20%加上期中成绩的30﹪加上期末成绩的50﹪计算即可.【详解】解:(1)这6个数从小到大排列为:105,1,1,110,112,113,中位数是=109,众数是1.

故答案为:109,1;

(2)平时测试的数学平均成绩=(分);

(3)总评成绩=(分)

答:该生本学期的数学总评成绩为110.2分。【点睛】本题考查了中位数和众数的定义,熟练的掌握数据的分析和加权平均数的计算方法是解题的关键.20、(1)8;(2)4.【解析】

将x2+y2变形为(x+y)2-2xy,再将x+y与xy的值代入即可;将整理为,再将x2+y2与xy的值代入即可.【详解】(1)∵x=+1,y=-1,∴x+y=2,xy=2,∴x2+y2=(x+y)2-2xy=(2)2-2×2=12-4=8.(2)∵x=+1,y=-1,∴x2+y2=8,xy=2,∴+===4.【点睛】本题考查了分式的化简求值,以及二次根式的化简求值,熟练掌握运算法则是解题的关键.21、(1)见解析;(2)①;②【解析】

(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;

(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;

②分三种情况讨论可知a与b满足的数量关系式.【详解】(1)证明:∵四边形是矩形,∴∴,∵垂直平分,垂足为,∴,∴,∴,∴四边形为平行四边形,又∵∴四边形为菱形,(2)①秒.显然当点在上时,点在上,此时四点不可能构成平行四边形;同理点在上时,点在或上,也不能构成平行四边形.因此只有当点在上、点在上时,才能构成平行四边形.∴以四点为顶点的四边形是平行四边形时,∴点的速度为每秒,点的速度为每秒,运动时间为秒,∴,∴,解得∴以四点为顶点的四边形是平行四边形时,秒.②与满足的数量关系式是,由题意得,以四点为顶点的四边形是平行四边形时,点在互相平行的对应边上,分三种情况:i)如图1,当点在上、点在上时,,即,得.ii)如图2,当点在上、点在上时,,即,得.iii)如图3,当点在上、点在上时,,即,得.综上所述,与满足的数量关系式是.【点睛】此题考查线段垂直平分线的性质,菱形的判定及性质,勾股定理,全等三角形的判定及性质,平行四边形的判定及性质,解题中注意分类讨论的思想.22、(1)详见解析;(2)【解析】

(1)首先根据题意可得,,在只需证明,即可证明≌.(2)首先利用在中,结合勾股定理计算AE,再利用等面积法计算BG即可.【详解】(1)证明:∵四边形是正方形∴,∵∴又∵∴∴≌;(2)解:∵在中,,∴又∵∴【点睛】本题主要考查正方形的性质,难度系数较低,应当熟练掌握.23、(1).(2)①判断:.理由见解析;②或.【解析】

(1)利用代点法可以求出参数;(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;②根据①中的情况,可知或再结合图像可以确定的取值范围;【详解】解:(1)∵函数的图象经过点,∴将点代入,即,得:∵直线与轴交于点,∴将点代入,即,得:(2)①判断:.理由如下:当时,点P的坐标为,如图所示:∴点C的坐标为,点D的坐标为∴,.∴.②由①可知当时所以由图像可知,当直线往下平移的时也符合题意,即,得;当时,点P的坐标为∴点C的坐标为,点D的坐标为∴,∴当时,即,也符合题意,所以的取值范围为:或.【点睛】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.24、化简为,当x=3时,此时的值为-10.【解析】

先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论