




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
arXiv:2207.04429v1[cs.RO]10Jul2022
LM-Nav:RoboticNavigationwithLargePre-TrainedModelsofLanguage,Vision,andAction
DhruvShah+β,BłaejOsiski+βω,BrianIchterγ,SergeyLevineβγβUCBerkeley,ωUniversityofWarsaw,γRoboticsatGoogle
Abstract:Goal-conditionedpoliciesforroboticnavigationcanbetrainedonlarge,unannotateddatasets,providingforgoodgeneralizationtoreal-worldset-tings.However,particularlyinvision-basedsettingswherespecifyinggoalsre-quiresanimage,thismakesforanunnaturalinterface.Languageprovidesamoreconvenientmodalityforcommunicationwithrobots,butcontemporarymethodstypicallyrequireexpensivesupervision,intheformoftrajectoriesannotatedwithlanguagedescriptions.Wepresentasystem,LM-Nav,forroboticnavigationthatenjoysthebenefitsoftrainingonunannotatedlargedatasetsoftrajectories,whilestillprovidingahigh-levelinterfacetotheuser.Insteadofutilizingalabeledinstructionfollowingdataset,weshowthatsuchasystemcanbeconstructeden-tirelyoutofpre-trainedmodelsfornavigation(ViNG),image-languageassocia-tion(CLIP),andlanguagemodeling(GPT-3),withoutrequiringanyfine-tuningorlanguage-annotatedrobotdata.WeinstantiateLM-Navonareal-worldmobilerobotanddemonstratelong-horizonnavigationthroughcomplex,outdoorenvi-ronmentsfromnaturallanguageinstructions.
Keywords:instructionfollowing,languagemodels,vision-basednavigation
1Introduction
Oneofthecentralchallengesinroboticlearningistoenablerobotstoperformawidevarietyoftasksoncommand,followinghigh-levelinstructionsfromhumans.Thisrequiresrobotsthatcanunderstandhumaninstructions,andareequippedwithalargerepertoireofdiversebehaviorstoexecutesuchinstructionsintherealworld.Priorworkoninstructionfollowinginnavigationhaslargelyfocusedonlearningfromtrajectoriesannotatedwithtextualinstructions[
1
–
5
].Thisenablesunderstandingoftextualinstructions,butthecostofdataannotationimpedeswideadoption.Ontheotherhand,recentworkhasshownthatlearningrobustnavigationispossiblethroughgoal-conditionedpoliciestrainedwithself-supervision.Theseutilizelarge,unlabeleddatasetstotrainvision-basedcontrollersviahindsightrelabeling[
6
–
11
].Theyprovidescalability,generalizability,androbustness,butusuallyinvolveaclunkymechanismforgoalspecification,usinglocationsorimages.Inthiswork,weaimtocombinethestrengthsofbothapproaches,enablingaself-supervisedsystemforroboticnavigationtoexecutenaturallanguageinstructionsbyleveragingthecapabilitiesofpre-trainedmodelswithoutanyuser-annotatednavigationaldata.Ourmethodusesthesemodelstoconstructan“interface”thathumanscanusetocommunicatedesiredtaskstorobots.Thissystemenjoystheimpressivegeneralizationcapabilitiesofthepre-trainedlanguageandvision-languagemodels,enablingtheroboticsystemtoacceptcomplexhigh-levelinstructions.
Ourmainobservationisthatwecanutilizeoff-the-shelfpre-trainedmodelstrainedonlargecorporaofvisualandlanguagedatasets—thatarewidelyavailableandshowgreatfew-shotgeneraliza-tioncapabilities—tocreatethisinterfaceforembodiedinstructionfollowing.Toachievethis,wecombinethestrengthsoftwosuchrobot-agnosticpre-trainedmodelswithapre-trainednavigationmodel.Weuseavisualnavigationmodel(VNM:ViNG[
11
])tocreateatopological“mentalmap”oftheenvironmentusingtherobot’sobservations.Givenfree-formtextualinstructions,weusea
+Theseauthorscontributedequally,orderdecidedbyacoinflip.Checkouttheprojectpageforexperimentvideos,code,andauser-friendlyColabnotebookthatrunsinyourbrowser:
/view/lmnav
2
Figure1:EmbodiedinstructionfollowingwithLM-Nav:Oursystemtakesasinputasetofrawobservationsfromthetargetenvironmentandfree-formtextualinstructions(left),derivinganactionableplanusingthreepre-trainedmodels:alargelanguagemodel(LLM)forextractinglandmarks,avision-and-languagemodel(VLM)forgrounding,andavisualnavigationmodel(VNM)forexecution.ThisenablesLM-Navtofollowtextualinstructionsincomplexenvironmentspurelyfromvisualobservations(right)withoutanyfine-tuning.
pre-trainedlargelanguagemodel(LLM:GPT-3[
12
])todecodetheinstructionsintoasequenceoftextuallandmarks.Wethenuseavision-languagemodel(VLM:CLIP[
13
])forgroundingthesetextuallandmarksinthetopologicalmap,byinferringajointlikelihoodoverthelandmarksandnodes.Anovelsearchalgorithmisthenusedtomaximizeaprobabilisticobjective,andfindaplanfortherobot,whichisthenexecutedbyVNM.
OurprimarycontributionisLargeModelNavigation,orLM-Nav,anembodiedinstructionfollow-ingsystemthatcombinesthreelargeindependentlypre-trainedmodels—aself-supervisedroboticcontrolmodelthatutilizesvisualobservationsandphysicalactions(VNM),avision-languagemodelthatgroundsimagesintextbuthasnocontextofembodiment(VLM),andalargelanguagemodelthatcanparseandtranslatetextbuthasnosenseofvisualgroundingorembodiment(LLM)—toenablelong-horizoninstructionfollowingincomplex,real-worldenvironments.Wepresentthefirstinstantiationofaroboticsystemthatcombinestheconfluenceofpre-trainedvision-and-languagemodelswithagoal-conditionedcontroller,toderiveactionableplanswithoutanyfine-tuninginthetargetenvironment.Notably,allthreemodelsaretrainedonlarge-scaledatasets,withself-supervisedobjectives,andusedoff-the-shelfwithnofine-tuning—nohumanannotationsoftherobotnavigationdataarenecessarytotrainLM-Nav.WeshowthatLM-Navisabletosuccess-fullyfollownaturallanguageinstructionsinnewenvironmentsoverthecourseof100sofmetersofcomplex,suburbannavigation,whiledisambiguatingpathswithfine-grainedcommands.
2RelatedWork
Earlyworksinaugmentingnavigationpolicieswithnaturallanguagecommandsusestatisticalma-chinetranslation[
14
]todiscoverdata-drivenpatternstomapfree-formcommandstoaformallan-guagedefinedbyagrammar[
15
–
19
].However,theseapproachestendtooperateonstructuredstatespaces.Ourworkiscloselyinspiredbymethodsthatinsteadreducethistasktoasequencepredic-tionproblem[
1,
20,
21
].Notably,ourgoalissimilartothetaskofVLN—leveragingfine-grainedinstructionstocontrolamobilerobotsolelyfromvisualobservations[
1,
2]
.
However,mostrecentapproachestoVLNusealargedatasetofsimulatedtrajectories—over1Mdemonstrations—annotatedwithfine-grainedlanguagelabelsinindoor[
1,
3
–
5,
22
]anddriv-ingscenarios[
23
–
28
],andrelyonsim-to-realtransferfordeploymentinsimpleindoorenviron-ments[
29,
30
].However,thisnecessitatesbuildingaphoto-realisticsimulatorresemblingthetargetenvironment,whichcanbechallengingforunstructuredenvironments,especiallyforthetaskofoutdoornavigation.Instead,LM-Navleveragesfree-formtextualinstructionstonavigatearobotincomplex,outdoorenvironmentswithoutaccesstoanysimulationoranytrajectory-levelannotations.Recentprogressinusinglarge-scalemodelsofnaturallanguageandimagestrainedondiversedatahasenabledapplicationsinawidevarietyoftextual[
31
–
33
],visual[
13,
34
–
38
],andembodieddomains[
39
–
44
].Inthelattercategory,Shridharetal.[
39
],Khandelwaletal.[
44
]andJangetal.
[40
]fine-tuneembeddingsfrompre-trainedmodelsonrobotdatawithlanguagelabels,Huangetal.
[41
]assumethatthelow-levelagentcanexecutetextualinstructions(withoutaddressingcontrol),
3
…
…
Text
Encoder
…
distance
CurrentObservation
IᐧTIᐧTIᐧT…IᐧT
1122131M
I
1
I
2
I
3
…
IN
actions
IᐧTIᐧTIᐧT…IᐧT
2122231M
ViT-L
ImageEncoder
IᐧTIᐧTIᐧT…IᐧT
3132331M
…………
(b)ViNGVNM
andAhnetal.[
42
]assumesthattherobothasasetoftext-conditionedskillsthatcanfollowatomictextualcommands.Alloftheseapproachesrequireaccesstolow-levelskillsthatcanfollowrudi-mentarytextualcommands,whichinturnrequireslanguageannotationsforroboticexperienceandastrongassumptionontherobot’scapabilities.Incontrast,wecombinethesepre-trainedvisionandlanguagemodelswithpre-trainedvisualpoliciesthatdonotuseanylanguageannotations[
11,
45]
withoutfine-tuningthesemodelsinthetargetenvironmentorforthetaskofVLN.
Data-drivenapproachestovision-basedmobilerobotnavigationoftenusephotorealisticsimula-tors[
46
–
49
]orsuperviseddatacollection
[50
]tolearngoal-reachingpoliciesdirectlyfromrawobservations.Self-supervisedmethodsfornavigation[
6
–
11,
51
]insteadcanuseunlabeleddatasetsoftrajectoriesbyautomaticallygeneratinglabelsusingonboardsensorsandhindsightrelabeling.Notably,suchapolicycanbetrainedonlarge,diversedatasetsandgeneralizetopreviouslyunseenenvironments[
45,
52
].Beingself-supervised,suchpoliciesareadeptatnavigatingtodesiredgoalsspecifiedbyGPSlocationsorimages,butareunabletoparsehigh-levelinstructionssuchasfree-formtext.LM-Navusesself-supervisedpoliciestrainedinalargenumberofpriorenvironments,augmentedwithpre-trainedvisionandlanguagemodelsforparsingnaturallanguageinstructions,anddeploystheminnovelreal-worldenvironmentswithoutanyfine-tuning.
3Preliminaries
LM-Navconsistsofthreelarge,pre-trainedmodelsforprocessinglan-guage,associatingimageswithlan-guage,andvisualnavigation.
Largelanguagemodelsaregener-ativemodelsbasedontheTrans-formerarchitecture[
53
],trainedonlargecorporaofinternettext.LM-NavusestheGPT-3LLM
[12
],toparsetextualinstructionsintoase-quenceoflandmarks.
Vision-and-languagemodelsrefertomodelsthatcanassociateimages
aphotoofa
stopsign
T1
T2
T3
…
TM
CommandedSubgoal
INᐧT1INᐧT2INᐧT3…INᐧT
M
(a)
CLIPVLM
Figure2:LM-NavusesVLMtoinferajointprobabilitydistribu-tionovertextuallandmarksandimageobservations.VNMconsti-tutesanimage-conditioneddistancefunctionandpolicythatcancontroltherobot.
andtext,e.g.imagecaptioning,visualquestion-answering,etc.[
54
–
56]
.WeusetheCLIPVLM
[13
],amodelthatjointlyencodesimagesandtextintoanembeddingspacethatallowsittodeterminehowlikelysomestringistobeassociatedwithagivenimage.WecanjointlyencodeasetoflandmarkdescriptionstobtainedfromtheLLMandasetofimagesiktoobtaintheirVLMembeddings{T,Ik}(seeFig.
3
).Computingthecosinesimilaritybetweentheseembeddings,fol-lowedbyasoftmaxoperationresultsinprobabilitiesP(ik|t),correspondingtothelikelihoodthatimageikcorrespondstothestringt.LM-Navusesthisprobabilitytoalignlandmarkdescriptionswithimages.
Visualnavigationmodelslearnnavigationbehaviorandnavigationalaffordancesdirectlyfromvi-sualobservations[
11,
51,
57
–
59
],associatingimagesandactionsthroughtime.WeusetheViNGVNM
[11
],agoal-conditionedmodelthatpredictstemporaldistancesbetweenpairsofimagesandthecorrespondingactionstoexecute(seeFig.
3
).Thisprovidesaninterfacebetweenimagesandembodiment.TheVNMservestwopurposes:(i)givenasetofobservationsinthetargetenviron-ment,thedistancepredictionsfromtheVNMcanbeusedtoconstructatopologicalgraphg(V,E)thatrepresentsa“mentalmap”oftheenvironment;(ii)givena“walk”,comprisingofasequenceofconnectedsubgoalstoagoalnode,theVNMcannavigatetherobotalongthisplan.Thetopologicalgraphgisanimportantabstractionthatallowsasimpleinterfaceforplanningoverpastexperienceintheenvironmentandhasbeensuccessfullyusedinpriorworktoperformlong-horizonnaviga-tion[
52,
60,
61
].Todeduceconnectivitying,weuseacombinationoflearneddistanceestimates,temporalproximity(duringdatacollection),andspatialproximity(usingGPSmeasurements).Foreveryconnectedpairofvertices{vi,vj},weassignthisdistanceestimatetothecorrespondingedgeweightD(vi,vj).Formoredetailsontheconstructionofthisgraph,seeAppendix
B.
4
Weformulatethetaskofinstruc-tionfollowingonthegraphasthatofmaximizingtheprobabilityofsuccessfullyexecutingawalkthatmatchestheinstruction.AswewilldiscussinSection
4.2
,wefirstparsetheinstructionintoalistoflandmarks
=l1,l2,...,lnthatshouldbevis-
itedinorder.RecallthattheVNMisusedtobuildatopologicalgraphthatrepresentstheconnectivityoftheen-vironmentfrompreviouslyseenob-servations,withnodes{vi}corre-spondingtopreviouslyseenimages.
Forawalk=v1,v2,...,vT,we
factorizetheprobabilitythatitcorre-
Figure3:Systemoverview:(a)VNMusesagoal-conditioneddistancefunctiontoinferconnectivitybetweenthesetofrawobservationsandconstructsatopologicalgraph.(b)LLMtranslatesnaturallanguageinstruc-tionsintoasequenceoftextuallandmarks.(c)VLMinfersajointprobabilitydistributionoverthelandmarkdescriptionsandnodesinthegraph,whichisusedby(d)agraphsearchalgorithmtoderivetheoptimalwalkthroughthegraph.(e)TherobotdrivesfollowingthewalkintherealworldusingtheVNMpolicy.
4LM-Nav:InstructionFollowingwithPre-TrainedModels
LM-Navcombinesthecomponentsdiscussedearliertofollowtextualinstructionsintherealworld.
TheLLMparsesfree-forminstructionsintoalistoflandmarks(Sec.
4.2
),theVLMassociates
theselandmarkswithnodesinthegraphbyestimatingtheprobabilitythateachnodecorresponds
toeachPl(|)(Sec.
4.3
),andtheVNMisthenusedtoinferhoweffectivelytherobotcannavigate
betweeneachpairofnodesinthegraph,whichweconvertintoaprobabilityP(vi,vj)derivedfromtheestimatedtemporaldistances.Tofindtheoptimal“walk”onthegraphthatboth(i)adherestotheprovidedinstructionsand(ii)minimizestraversalcost,wederiveaprobabilisticobjective(Sec.
4.1)
andshowhowitcanbeoptimizedusingagraphsearchalgorithm(Sec.
4.4
).ThisoptimalwalkisthenexecutedintherealworldbyusingtheactionsproducedbytheVNMmodel.
4.1ProblemFormulation
Algorithm1:GraphSearch
1:Input:Landmarks(l1,l2,...,ln).
2:Input:Graphg(V,E).
3:Input:StartingnodeS.
4:Vi=0,...,nQ[li,v]=_o
v=V
5:Q[0,S]=0
6:Dijkstraalgorithm(g,Q[0,*])
7:foriin1,2,...,ndo
8:Vv=VQ[i,v]=Q[i_1,v]+CLIP(li,v)
9:Dijkstraalgorithm(g,Q[i,*])
10:endfor
11:destination=argmax(Q[n,*])
12:returnbacktrack(destination,Q[n,*])
spondstothegiveninstructioninto:(i)Pl,theprobabilitythatthewalkvisitsalllandmarksfromthedescription;(ii)Pt,theprobabilitythatthewalkcanbeexecutedsuccessfully.Let=l1,l2,...,lnbethelistoflandmarksdescribedinthenaturallanguageinstructions,andletP(li|vj)denotetheprobabilitythatnodevjcorrespondstothelandmarkdescriptionli.Thenwehave:
Pl(|)=1≤t1≤t≤tn≤TUP(lk|vtk),(1)
1≤k≤n
wheret1,t2,...,tnisassignmentofasubsequenceofwalk’snodetolandmarkdescriptions.
5
ToobtaintheprobabilityPt(),wemustconvertthedistanceestimatesprovidedbytheVNMmodel
intoprobabilities.Thishasbeenstudiedintheliteratureongoal-conditionedpolicies[
62,
63
].AsimplemodelbasedonadiscountedMDPformulationistomodeltheprobabilityofsuccessfullyreachingthegoalasγtothepowernumberoftimesteps,whichcorrespondstoaprobabilityofterminationof1_γateachtimestep.Wethenhave
Pt()=ⅡP(vj,vj+1)=ⅡγD(vj,vj+1),(2)
1≤j<n1≤j<n
whereD(vj,vj+1)referstothelength(inthenumberoftimesteps)oftheedgebetweennodesvjandvj+1,whichisprovidedbytheVNMmodel.Thefinalprobabilisticobjectivethatoursystemneedstomaximizebecomes:
PM()=Pt()Pl(|)=ⅡγD(vj,vj+1)
1≤j<n
1≤t1≤x.≤tn≤tⅡP(lk|vtk).(3)
1≤k≤n
4.2ParsingFree-FormTextualInstructions
Theuserspecifiestheroutetheywanttherobottotakeusingnaturallanguage,whiletheobjectiveaboveisdefinedintermsofasequenceofdesiredlandmarks.Toextractthissequencefromtheuser’snaturallanguageinstructionweemployastandardlargelanguagemodel,whichinourprototypeisGPT-3[
12
].Weusedapromptwith3examplesofcorrectlandmarks’extractions,followedupbythedescriptiontobetranslatedbytheLLM.Suchanapproachworkedfortheinstructionsthatwetestediton.ExamplesofinstructionstogetherwithlandmarksextractedbythemodelcanbefoundinFig.
4.
Theappropriateselectionoftheprompt,includingthose3examples,wasrequiredformorenuancedcases.Fordetailsofthe“promptengineering”pleaseseeAppendix
A.
4.3VisuallyGroundingLandmarkDescriptions
AsdiscussedinSec.
4.1
,acrucialelementofselectingthewalkthroughthegraphiscomputingP(li|vj),theprobabilitythatlandmarkdescriptionlireferstonodevj(seeEquation
1
).Witheachnodecontaininganimagetakenduringinitialdatacollection,theprobabilitycanbecomputedusingCLIP[
13
]inthewaydescribedinSec.
3
astheretrievaltask.AspresentedinFig.
2,toemploy
CLIPtocomputeP(li|vj),weusetheimageatnodevjandcaptionpromptsintheformof“Thisisaphotoofa[li]”.TheresultingprobabilityP(li|vj),togetherwiththeinferrededges’distanceswillbeusedtoselecttheoptimalwalkinthegraph.
4.4GraphSearchfortheOptimalWalk
AsdescribedinSec.
4.1,
LM-Navaimsatfindingawalk=(v1,v2,...,vT)thatmaximizestheprobabilityofsuccessfulexecutionthatadherestothegiveninstructions.WeformalizedthisprobabilityPMdefinedbyEqn.
3
.WecandefineafunctionR(,)foramonotonicallyincreasingsequenceofindices=(t1,t2,...,tn):
n
T—1
R(,):=logP(li|vti)_αD(vj,vj+1),whereα=_logγ.(4)
whichhasthepropertythat()maximizesPMifandonlyifthereexistssuchthat,maximizesR.Inordertofindsuch,,weemploydynamicprogramming.InparticularwedefineahelperfunctionQ(i,v)forie{0,1,...,n},veV:
Q(i,v)=
max
=(v1,v2,...,vj),vj=v
=(t1,t2,...,ti)
R(,).(5)
Q(i,v)representsthemaximalvalueofRforawalkendinginvthatvisitedthelandmarksuptoindexi.ThebasecaseQ(0,v)visitsnoneofthelandmarks,anditsvalueofRissimplyequaltominusthelengthofshortestpathfromnodeS.Fori>0wehave:
Q(i,v)=max╱Q(i_1,v)+logP(li|v),w∈nrs(v)Q(i,w)_α.D(v,w)、.(6)
6
Figure4:QualitativeexamplesofLM-Navinreal-worldenvironmentsexecutingtextualinstructions(left).ThelandmarksextractedbyLLM(highlightedintext)aregroundedintovisualobservationsbyVLM(center;overheadimagenotavailabletotherobot).TheresultingwalkofthegraphisexecutedbyVNM(right).
ThebasecaseforDPistocomputeQ(0,V).Then,ineachstepofDPi=1,2,...,nwecomputeQ(i,v).ThiscomputationresemblestheDijkstraalgorithm([
64
]).Ineachiteration,wepickthenodevwiththelargestvalueofQ(i,v)andupdateitsneighborsbasedontheEqn.
6
.Algorithm
1
summarizesthissearchprocess.Theresultofthisalgorithmisawalk=(v1,v2,...,vT)that
maximizestheprobabilityofsuccessfullycarryingouttheinstruction.Givensuchawalk,VNMcanexecutethepathbyusingitsactionestimatestosequentiallynavigatetothesenodes.
5SystemEvaluation
WenowdescribeourexperimentsdeployingLM-Navinavarietyofoutdoorsettingstofollowhigh-levelnaturallanguageinstructionswithasmallgroundrobot.Forallexperiments,theweightsofLLM,VLM,andVNMarefrozen—thereisnofine-tuningorannotationinthetargetenvironment.Weevaluatethecompletesystem,aswellastheindividualcomponentsofLM-Nav,tounderstanditsstrengthsandlimitations.OurexperimentsdemonstratetheabilityofLM-Navtofollowhigh-levelinstructions,disambiguatepaths,andreachgoalsthatareupto800maway.
5.1MobileRobotPlatform
WeimplementLM-NavonaClearpathJackalUGVplatform(seeFig.
1
(right)).Thesensorsuiteconsistsofa6-DoFIMU,aGPSunitforapproximatelocalization,wheelencodersforlocalodom-etry,andfront-andrear-facingRGBcameraswitha170Оfield-of-viewforcapturingvisualobser-vationsandlocalizationinthetopologicalgraph.TheLLMandVLMqueriesarepre-computedonaremoteworkstationandthecomputedpathiscommandedtotherobotwirelessly.TheVNMrunson-boardandonlyusesforwardRGBimagesandunfilteredGPSmeasurements.
5.2FollowingInstructionswithLM-Nav
Ineachevaluationenvironment,wefirstconstructthegraphbymanuallydrivingtherobotandcollectingimageandGPSobservations.ThegraphisconstructedautomaticallyusingtheVNMfromthisdata,andinprinciplesuchdatacouldalsobeobtainedfrompasttraversals,orevenwithautonomousexplorationmethods[
45]
.Oncethegraphisconstructed,therobotcancarryoutin-structionsinthatenvironment.Wetestedoursystemon20queries,inenvironmentsofvaryingdifficulty,correspondingtoatotalcombinedlengthofover6km.Instructionsincludeasetofprominentlandmarksintheenvironmentthatcanbeidentifiedfromtherobot’sobservations,e.g.trafficcones,buildings,stopsigns,etc.
Fig.
4
showsqualitativeexamplesofthepathtakenbytherobot.Notethattheoverheadimageandspatiallocalizationofthelandmarksisnotavailabletotherobotandisshownforvisualizationonly.InFig.
4
(a),LM-Navisabletosuccessfullylocalizethesimplelandmarksfromitspriortraversalandfindashortpathtothegoal.Whiletherearemultiplestopsignsintheenvironment,theobjectiveinEqn.
3
causestherobottopickthecorrectstopsignincontext,soastominimizeoveralltraveldistance.Fig.
4
(b)highlightsLM-Nav’sabilitytoparsecomplexinstructionswith
7
Gostraighttowardthewhitebuilding.Continuestraightpassingbyawhitetruckuntilyoureachastopsign.
multiplelandmarksspecifyingtheroute—despitethepossibilityofashorterroutedirectlytothefinallandmarkthatignoresinstructions,therobotfindsapaththatvisitsallofthelandmarksinthecorrectorder.
Disambiguationwithinstructions.SincetheobjectiveofLM-Navistofollowinstructions,andnotmerelytoreachthefinalgoal,differentin-structionsmayleadtodifferenttraversals.Fig.
5
showsanexamplewheremodifyingtheinstruc-tioncandisambiguatemultiplepathstothegoal.Giventheshorterprompt(blue),LM-Navprefersthemoredirectpath.Onspecifyingamorefine-grainedroute(magenta),LM-Navtakesanalter-natepaththatpassesadifferentsetoflandmarks.
Missinglandmarks.WhileLM-Naviseffectiveatparsinglandmarksfrominstructions,localizingthemonthegraph,andfindingapathtothegoal,itreliesontheassumptionthatthelandmarks(i)existintheenvironment,and(ii)canbeidentifiedbytheVLM.Fig.
4
(c)illustratesacasewheretheexecutedpathfailsto
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业扶贫帮扶协议书
- 政府多方联动协议书
- 苗木养护协议书格式
- 汽车销售互助协议书
- 灾害救助补偿协议书
- 农村泵房承包协议书
- 装修责任分割协议书
- 外聘专家协议书模板
- 离婚车辆过户协议书
- 乐昌粮食产销协议书
- GB/T 36089-2018丙烯腈-丁二烯橡胶(NBR)
- 2022年国家义务教育质量检测练习卷1八年级音乐练习卷
- 水利工程施工组织设计技术标(完整版)
- 【中小学】校内论坛、讲坛、讲座、年会、报告会、研讨会等管理制度
- 软件详细设计说明书(例)
- DB44-T 2283-2021水利工程生态设计导则1-(高清现行)
- XX县城区新建公厕、生活垃圾中转站项目实施方案可行性研究报告
- 哈萨克斯坦铁路车站代码
- 利润分配专项审计
- 勇者斗恶龙之怪兽仙境图表资料合集(合成表技能)
- 履带式液压挖掘机挖掘机构设计
评论
0/150
提交评论