版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
arXiv:2207.04429v1[cs.RO]10Jul2022
LM-Nav:RoboticNavigationwithLargePre-TrainedModelsofLanguage,Vision,andAction
DhruvShah+β,BłaejOsiski+βω,BrianIchterγ,SergeyLevineβγβUCBerkeley,ωUniversityofWarsaw,γRoboticsatGoogle
Abstract:Goal-conditionedpoliciesforroboticnavigationcanbetrainedonlarge,unannotateddatasets,providingforgoodgeneralizationtoreal-worldset-tings.However,particularlyinvision-basedsettingswherespecifyinggoalsre-quiresanimage,thismakesforanunnaturalinterface.Languageprovidesamoreconvenientmodalityforcommunicationwithrobots,butcontemporarymethodstypicallyrequireexpensivesupervision,intheformoftrajectoriesannotatedwithlanguagedescriptions.Wepresentasystem,LM-Nav,forroboticnavigationthatenjoysthebenefitsoftrainingonunannotatedlargedatasetsoftrajectories,whilestillprovidingahigh-levelinterfacetotheuser.Insteadofutilizingalabeledinstructionfollowingdataset,weshowthatsuchasystemcanbeconstructeden-tirelyoutofpre-trainedmodelsfornavigation(ViNG),image-languageassocia-tion(CLIP),andlanguagemodeling(GPT-3),withoutrequiringanyfine-tuningorlanguage-annotatedrobotdata.WeinstantiateLM-Navonareal-worldmobilerobotanddemonstratelong-horizonnavigationthroughcomplex,outdoorenvi-ronmentsfromnaturallanguageinstructions.
Keywords:instructionfollowing,languagemodels,vision-basednavigation
1Introduction
Oneofthecentralchallengesinroboticlearningistoenablerobotstoperformawidevarietyoftasksoncommand,followinghigh-levelinstructionsfromhumans.Thisrequiresrobotsthatcanunderstandhumaninstructions,andareequippedwithalargerepertoireofdiversebehaviorstoexecutesuchinstructionsintherealworld.Priorworkoninstructionfollowinginnavigationhaslargelyfocusedonlearningfromtrajectoriesannotatedwithtextualinstructions[
1
–
5
].Thisenablesunderstandingoftextualinstructions,butthecostofdataannotationimpedeswideadoption.Ontheotherhand,recentworkhasshownthatlearningrobustnavigationispossiblethroughgoal-conditionedpoliciestrainedwithself-supervision.Theseutilizelarge,unlabeleddatasetstotrainvision-basedcontrollersviahindsightrelabeling[
6
–
11
].Theyprovidescalability,generalizability,androbustness,butusuallyinvolveaclunkymechanismforgoalspecification,usinglocationsorimages.Inthiswork,weaimtocombinethestrengthsofbothapproaches,enablingaself-supervisedsystemforroboticnavigationtoexecutenaturallanguageinstructionsbyleveragingthecapabilitiesofpre-trainedmodelswithoutanyuser-annotatednavigationaldata.Ourmethodusesthesemodelstoconstructan“interface”thathumanscanusetocommunicatedesiredtaskstorobots.Thissystemenjoystheimpressivegeneralizationcapabilitiesofthepre-trainedlanguageandvision-languagemodels,enablingtheroboticsystemtoacceptcomplexhigh-levelinstructions.
Ourmainobservationisthatwecanutilizeoff-the-shelfpre-trainedmodelstrainedonlargecorporaofvisualandlanguagedatasets—thatarewidelyavailableandshowgreatfew-shotgeneraliza-tioncapabilities—tocreatethisinterfaceforembodiedinstructionfollowing.Toachievethis,wecombinethestrengthsoftwosuchrobot-agnosticpre-trainedmodelswithapre-trainednavigationmodel.Weuseavisualnavigationmodel(VNM:ViNG[
11
])tocreateatopological“mentalmap”oftheenvironmentusingtherobot’sobservations.Givenfree-formtextualinstructions,weusea
+Theseauthorscontributedequally,orderdecidedbyacoinflip.Checkouttheprojectpageforexperimentvideos,code,andauser-friendlyColabnotebookthatrunsinyourbrowser:
/view/lmnav
2
Figure1:EmbodiedinstructionfollowingwithLM-Nav:Oursystemtakesasinputasetofrawobservationsfromthetargetenvironmentandfree-formtextualinstructions(left),derivinganactionableplanusingthreepre-trainedmodels:alargelanguagemodel(LLM)forextractinglandmarks,avision-and-languagemodel(VLM)forgrounding,andavisualnavigationmodel(VNM)forexecution.ThisenablesLM-Navtofollowtextualinstructionsincomplexenvironmentspurelyfromvisualobservations(right)withoutanyfine-tuning.
pre-trainedlargelanguagemodel(LLM:GPT-3[
12
])todecodetheinstructionsintoasequenceoftextuallandmarks.Wethenuseavision-languagemodel(VLM:CLIP[
13
])forgroundingthesetextuallandmarksinthetopologicalmap,byinferringajointlikelihoodoverthelandmarksandnodes.Anovelsearchalgorithmisthenusedtomaximizeaprobabilisticobjective,andfindaplanfortherobot,whichisthenexecutedbyVNM.
OurprimarycontributionisLargeModelNavigation,orLM-Nav,anembodiedinstructionfollow-ingsystemthatcombinesthreelargeindependentlypre-trainedmodels—aself-supervisedroboticcontrolmodelthatutilizesvisualobservationsandphysicalactions(VNM),avision-languagemodelthatgroundsimagesintextbuthasnocontextofembodiment(VLM),andalargelanguagemodelthatcanparseandtranslatetextbuthasnosenseofvisualgroundingorembodiment(LLM)—toenablelong-horizoninstructionfollowingincomplex,real-worldenvironments.Wepresentthefirstinstantiationofaroboticsystemthatcombinestheconfluenceofpre-trainedvision-and-languagemodelswithagoal-conditionedcontroller,toderiveactionableplanswithoutanyfine-tuninginthetargetenvironment.Notably,allthreemodelsaretrainedonlarge-scaledatasets,withself-supervisedobjectives,andusedoff-the-shelfwithnofine-tuning—nohumanannotationsoftherobotnavigationdataarenecessarytotrainLM-Nav.WeshowthatLM-Navisabletosuccess-fullyfollownaturallanguageinstructionsinnewenvironmentsoverthecourseof100sofmetersofcomplex,suburbannavigation,whiledisambiguatingpathswithfine-grainedcommands.
2RelatedWork
Earlyworksinaugmentingnavigationpolicieswithnaturallanguagecommandsusestatisticalma-chinetranslation[
14
]todiscoverdata-drivenpatternstomapfree-formcommandstoaformallan-guagedefinedbyagrammar[
15
–
19
].However,theseapproachestendtooperateonstructuredstatespaces.Ourworkiscloselyinspiredbymethodsthatinsteadreducethistasktoasequencepredic-tionproblem[
1,
20,
21
].Notably,ourgoalissimilartothetaskofVLN—leveragingfine-grainedinstructionstocontrolamobilerobotsolelyfromvisualobservations[
1,
2]
.
However,mostrecentapproachestoVLNusealargedatasetofsimulatedtrajectories—over1Mdemonstrations—annotatedwithfine-grainedlanguagelabelsinindoor[
1,
3
–
5,
22
]anddriv-ingscenarios[
23
–
28
],andrelyonsim-to-realtransferfordeploymentinsimpleindoorenviron-ments[
29,
30
].However,thisnecessitatesbuildingaphoto-realisticsimulatorresemblingthetargetenvironment,whichcanbechallengingforunstructuredenvironments,especiallyforthetaskofoutdoornavigation.Instead,LM-Navleveragesfree-formtextualinstructionstonavigatearobotincomplex,outdoorenvironmentswithoutaccesstoanysimulationoranytrajectory-levelannotations.Recentprogressinusinglarge-scalemodelsofnaturallanguageandimagestrainedondiversedatahasenabledapplicationsinawidevarietyoftextual[
31
–
33
],visual[
13,
34
–
38
],andembodieddomains[
39
–
44
].Inthelattercategory,Shridharetal.[
39
],Khandelwaletal.[
44
]andJangetal.
[40
]fine-tuneembeddingsfrompre-trainedmodelsonrobotdatawithlanguagelabels,Huangetal.
[41
]assumethatthelow-levelagentcanexecutetextualinstructions(withoutaddressingcontrol),
3
…
…
Text
Encoder
…
distance
CurrentObservation
IᐧTIᐧTIᐧT…IᐧT
1122131M
I
1
I
2
I
3
…
IN
actions
IᐧTIᐧTIᐧT…IᐧT
2122231M
ViT-L
ImageEncoder
IᐧTIᐧTIᐧT…IᐧT
3132331M
…………
(b)ViNGVNM
andAhnetal.[
42
]assumesthattherobothasasetoftext-conditionedskillsthatcanfollowatomictextualcommands.Alloftheseapproachesrequireaccesstolow-levelskillsthatcanfollowrudi-mentarytextualcommands,whichinturnrequireslanguageannotationsforroboticexperienceandastrongassumptionontherobot’scapabilities.Incontrast,wecombinethesepre-trainedvisionandlanguagemodelswithpre-trainedvisualpoliciesthatdonotuseanylanguageannotations[
11,
45]
withoutfine-tuningthesemodelsinthetargetenvironmentorforthetaskofVLN.
Data-drivenapproachestovision-basedmobilerobotnavigationoftenusephotorealisticsimula-tors[
46
–
49
]orsuperviseddatacollection
[50
]tolearngoal-reachingpoliciesdirectlyfromrawobservations.Self-supervisedmethodsfornavigation[
6
–
11,
51
]insteadcanuseunlabeleddatasetsoftrajectoriesbyautomaticallygeneratinglabelsusingonboardsensorsandhindsightrelabeling.Notably,suchapolicycanbetrainedonlarge,diversedatasetsandgeneralizetopreviouslyunseenenvironments[
45,
52
].Beingself-supervised,suchpoliciesareadeptatnavigatingtodesiredgoalsspecifiedbyGPSlocationsorimages,butareunabletoparsehigh-levelinstructionssuchasfree-formtext.LM-Navusesself-supervisedpoliciestrainedinalargenumberofpriorenvironments,augmentedwithpre-trainedvisionandlanguagemodelsforparsingnaturallanguageinstructions,anddeploystheminnovelreal-worldenvironmentswithoutanyfine-tuning.
3Preliminaries
LM-Navconsistsofthreelarge,pre-trainedmodelsforprocessinglan-guage,associatingimageswithlan-guage,andvisualnavigation.
Largelanguagemodelsaregener-ativemodelsbasedontheTrans-formerarchitecture[
53
],trainedonlargecorporaofinternettext.LM-NavusestheGPT-3LLM
[12
],toparsetextualinstructionsintoase-quenceoflandmarks.
Vision-and-languagemodelsrefertomodelsthatcanassociateimages
aphotoofa
stopsign
T1
T2
T3
…
TM
CommandedSubgoal
INᐧT1INᐧT2INᐧT3…INᐧT
M
(a)
CLIPVLM
Figure2:LM-NavusesVLMtoinferajointprobabilitydistribu-tionovertextuallandmarksandimageobservations.VNMconsti-tutesanimage-conditioneddistancefunctionandpolicythatcancontroltherobot.
andtext,e.g.imagecaptioning,visualquestion-answering,etc.[
54
–
56]
.WeusetheCLIPVLM
[13
],amodelthatjointlyencodesimagesandtextintoanembeddingspacethatallowsittodeterminehowlikelysomestringistobeassociatedwithagivenimage.WecanjointlyencodeasetoflandmarkdescriptionstobtainedfromtheLLMandasetofimagesiktoobtaintheirVLMembeddings{T,Ik}(seeFig.
3
).Computingthecosinesimilaritybetweentheseembeddings,fol-lowedbyasoftmaxoperationresultsinprobabilitiesP(ik|t),correspondingtothelikelihoodthatimageikcorrespondstothestringt.LM-Navusesthisprobabilitytoalignlandmarkdescriptionswithimages.
Visualnavigationmodelslearnnavigationbehaviorandnavigationalaffordancesdirectlyfromvi-sualobservations[
11,
51,
57
–
59
],associatingimagesandactionsthroughtime.WeusetheViNGVNM
[11
],agoal-conditionedmodelthatpredictstemporaldistancesbetweenpairsofimagesandthecorrespondingactionstoexecute(seeFig.
3
).Thisprovidesaninterfacebetweenimagesandembodiment.TheVNMservestwopurposes:(i)givenasetofobservationsinthetargetenviron-ment,thedistancepredictionsfromtheVNMcanbeusedtoconstructatopologicalgraphg(V,E)thatrepresentsa“mentalmap”oftheenvironment;(ii)givena“walk”,comprisingofasequenceofconnectedsubgoalstoagoalnode,theVNMcannavigatetherobotalongthisplan.Thetopologicalgraphgisanimportantabstractionthatallowsasimpleinterfaceforplanningoverpastexperienceintheenvironmentandhasbeensuccessfullyusedinpriorworktoperformlong-horizonnaviga-tion[
52,
60,
61
].Todeduceconnectivitying,weuseacombinationoflearneddistanceestimates,temporalproximity(duringdatacollection),andspatialproximity(usingGPSmeasurements).Foreveryconnectedpairofvertices{vi,vj},weassignthisdistanceestimatetothecorrespondingedgeweightD(vi,vj).Formoredetailsontheconstructionofthisgraph,seeAppendix
B.
4
Weformulatethetaskofinstruc-tionfollowingonthegraphasthatofmaximizingtheprobabilityofsuccessfullyexecutingawalkthatmatchestheinstruction.AswewilldiscussinSection
4.2
,wefirstparsetheinstructionintoalistoflandmarks
=l1,l2,...,lnthatshouldbevis-
itedinorder.RecallthattheVNMisusedtobuildatopologicalgraphthatrepresentstheconnectivityoftheen-vironmentfrompreviouslyseenob-servations,withnodes{vi}corre-spondingtopreviouslyseenimages.
Forawalk=v1,v2,...,vT,we
factorizetheprobabilitythatitcorre-
Figure3:Systemoverview:(a)VNMusesagoal-conditioneddistancefunctiontoinferconnectivitybetweenthesetofrawobservationsandconstructsatopologicalgraph.(b)LLMtranslatesnaturallanguageinstruc-tionsintoasequenceoftextuallandmarks.(c)VLMinfersajointprobabilitydistributionoverthelandmarkdescriptionsandnodesinthegraph,whichisusedby(d)agraphsearchalgorithmtoderivetheoptimalwalkthroughthegraph.(e)TherobotdrivesfollowingthewalkintherealworldusingtheVNMpolicy.
4LM-Nav:InstructionFollowingwithPre-TrainedModels
LM-Navcombinesthecomponentsdiscussedearliertofollowtextualinstructionsintherealworld.
TheLLMparsesfree-forminstructionsintoalistoflandmarks(Sec.
4.2
),theVLMassociates
theselandmarkswithnodesinthegraphbyestimatingtheprobabilitythateachnodecorresponds
toeachPl(|)(Sec.
4.3
),andtheVNMisthenusedtoinferhoweffectivelytherobotcannavigate
betweeneachpairofnodesinthegraph,whichweconvertintoaprobabilityP(vi,vj)derivedfromtheestimatedtemporaldistances.Tofindtheoptimal“walk”onthegraphthatboth(i)adherestotheprovidedinstructionsand(ii)minimizestraversalcost,wederiveaprobabilisticobjective(Sec.
4.1)
andshowhowitcanbeoptimizedusingagraphsearchalgorithm(Sec.
4.4
).ThisoptimalwalkisthenexecutedintherealworldbyusingtheactionsproducedbytheVNMmodel.
4.1ProblemFormulation
Algorithm1:GraphSearch
1:Input:Landmarks(l1,l2,...,ln).
2:Input:Graphg(V,E).
3:Input:StartingnodeS.
4:Vi=0,...,nQ[li,v]=_o
v=V
5:Q[0,S]=0
6:Dijkstraalgorithm(g,Q[0,*])
7:foriin1,2,...,ndo
8:Vv=VQ[i,v]=Q[i_1,v]+CLIP(li,v)
9:Dijkstraalgorithm(g,Q[i,*])
10:endfor
11:destination=argmax(Q[n,*])
12:returnbacktrack(destination,Q[n,*])
spondstothegiveninstructioninto:(i)Pl,theprobabilitythatthewalkvisitsalllandmarksfromthedescription;(ii)Pt,theprobabilitythatthewalkcanbeexecutedsuccessfully.Let=l1,l2,...,lnbethelistoflandmarksdescribedinthenaturallanguageinstructions,andletP(li|vj)denotetheprobabilitythatnodevjcorrespondstothelandmarkdescriptionli.Thenwehave:
Pl(|)=1≤t1≤t≤tn≤TUP(lk|vtk),(1)
1≤k≤n
wheret1,t2,...,tnisassignmentofasubsequenceofwalk’snodetolandmarkdescriptions.
5
ToobtaintheprobabilityPt(),wemustconvertthedistanceestimatesprovidedbytheVNMmodel
intoprobabilities.Thishasbeenstudiedintheliteratureongoal-conditionedpolicies[
62,
63
].AsimplemodelbasedonadiscountedMDPformulationistomodeltheprobabilityofsuccessfullyreachingthegoalasγtothepowernumberoftimesteps,whichcorrespondstoaprobabilityofterminationof1_γateachtimestep.Wethenhave
Pt()=ⅡP(vj,vj+1)=ⅡγD(vj,vj+1),(2)
1≤j<n1≤j<n
whereD(vj,vj+1)referstothelength(inthenumberoftimesteps)oftheedgebetweennodesvjandvj+1,whichisprovidedbytheVNMmodel.Thefinalprobabilisticobjectivethatoursystemneedstomaximizebecomes:
PM()=Pt()Pl(|)=ⅡγD(vj,vj+1)
1≤j<n
1≤t1≤x.≤tn≤tⅡP(lk|vtk).(3)
1≤k≤n
4.2ParsingFree-FormTextualInstructions
Theuserspecifiestheroutetheywanttherobottotakeusingnaturallanguage,whiletheobjectiveaboveisdefinedintermsofasequenceofdesiredlandmarks.Toextractthissequencefromtheuser’snaturallanguageinstructionweemployastandardlargelanguagemodel,whichinourprototypeisGPT-3[
12
].Weusedapromptwith3examplesofcorrectlandmarks’extractions,followedupbythedescriptiontobetranslatedbytheLLM.Suchanapproachworkedfortheinstructionsthatwetestediton.ExamplesofinstructionstogetherwithlandmarksextractedbythemodelcanbefoundinFig.
4.
Theappropriateselectionoftheprompt,includingthose3examples,wasrequiredformorenuancedcases.Fordetailsofthe“promptengineering”pleaseseeAppendix
A.
4.3VisuallyGroundingLandmarkDescriptions
AsdiscussedinSec.
4.1
,acrucialelementofselectingthewalkthroughthegraphiscomputingP(li|vj),theprobabilitythatlandmarkdescriptionlireferstonodevj(seeEquation
1
).Witheachnodecontaininganimagetakenduringinitialdatacollection,theprobabilitycanbecomputedusingCLIP[
13
]inthewaydescribedinSec.
3
astheretrievaltask.AspresentedinFig.
2,toemploy
CLIPtocomputeP(li|vj),weusetheimageatnodevjandcaptionpromptsintheformof“Thisisaphotoofa[li]”.TheresultingprobabilityP(li|vj),togetherwiththeinferrededges’distanceswillbeusedtoselecttheoptimalwalkinthegraph.
4.4GraphSearchfortheOptimalWalk
AsdescribedinSec.
4.1,
LM-Navaimsatfindingawalk=(v1,v2,...,vT)thatmaximizestheprobabilityofsuccessfulexecutionthatadherestothegiveninstructions.WeformalizedthisprobabilityPMdefinedbyEqn.
3
.WecandefineafunctionR(,)foramonotonicallyincreasingsequenceofindices=(t1,t2,...,tn):
n
T—1
R(,):=logP(li|vti)_αD(vj,vj+1),whereα=_logγ.(4)
whichhasthepropertythat()maximizesPMifandonlyifthereexistssuchthat,maximizesR.Inordertofindsuch,,weemploydynamicprogramming.InparticularwedefineahelperfunctionQ(i,v)forie{0,1,...,n},veV:
Q(i,v)=
max
=(v1,v2,...,vj),vj=v
=(t1,t2,...,ti)
R(,).(5)
Q(i,v)representsthemaximalvalueofRforawalkendinginvthatvisitedthelandmarksuptoindexi.ThebasecaseQ(0,v)visitsnoneofthelandmarks,anditsvalueofRissimplyequaltominusthelengthofshortestpathfromnodeS.Fori>0wehave:
Q(i,v)=max╱Q(i_1,v)+logP(li|v),w∈nrs(v)Q(i,w)_α.D(v,w)、.(6)
6
Figure4:QualitativeexamplesofLM-Navinreal-worldenvironmentsexecutingtextualinstructions(left).ThelandmarksextractedbyLLM(highlightedintext)aregroundedintovisualobservationsbyVLM(center;overheadimagenotavailabletotherobot).TheresultingwalkofthegraphisexecutedbyVNM(right).
ThebasecaseforDPistocomputeQ(0,V).Then,ineachstepofDPi=1,2,...,nwecomputeQ(i,v).ThiscomputationresemblestheDijkstraalgorithm([
64
]).Ineachiteration,wepickthenodevwiththelargestvalueofQ(i,v)andupdateitsneighborsbasedontheEqn.
6
.Algorithm
1
summarizesthissearchprocess.Theresultofthisalgorithmisawalk=(v1,v2,...,vT)that
maximizestheprobabilityofsuccessfullycarryingouttheinstruction.Givensuchawalk,VNMcanexecutethepathbyusingitsactionestimatestosequentiallynavigatetothesenodes.
5SystemEvaluation
WenowdescribeourexperimentsdeployingLM-Navinavarietyofoutdoorsettingstofollowhigh-levelnaturallanguageinstructionswithasmallgroundrobot.Forallexperiments,theweightsofLLM,VLM,andVNMarefrozen—thereisnofine-tuningorannotationinthetargetenvironment.Weevaluatethecompletesystem,aswellastheindividualcomponentsofLM-Nav,tounderstanditsstrengthsandlimitations.OurexperimentsdemonstratetheabilityofLM-Navtofollowhigh-levelinstructions,disambiguatepaths,andreachgoalsthatareupto800maway.
5.1MobileRobotPlatform
WeimplementLM-NavonaClearpathJackalUGVplatform(seeFig.
1
(right)).Thesensorsuiteconsistsofa6-DoFIMU,aGPSunitforapproximatelocalization,wheelencodersforlocalodom-etry,andfront-andrear-facingRGBcameraswitha170Оfield-of-viewforcapturingvisualobser-vationsandlocalizationinthetopologicalgraph.TheLLMandVLMqueriesarepre-computedonaremoteworkstationandthecomputedpathiscommandedtotherobotwirelessly.TheVNMrunson-boardandonlyusesforwardRGBimagesandunfilteredGPSmeasurements.
5.2FollowingInstructionswithLM-Nav
Ineachevaluationenvironment,wefirstconstructthegraphbymanuallydrivingtherobotandcollectingimageandGPSobservations.ThegraphisconstructedautomaticallyusingtheVNMfromthisdata,andinprinciplesuchdatacouldalsobeobtainedfrompasttraversals,orevenwithautonomousexplorationmethods[
45]
.Oncethegraphisconstructed,therobotcancarryoutin-structionsinthatenvironment.Wetestedoursystemon20queries,inenvironmentsofvaryingdifficulty,correspondingtoatotalcombinedlengthofover6km.Instructionsincludeasetofprominentlandmarksintheenvironmentthatcanbeidentifiedfromtherobot’sobservations,e.g.trafficcones,buildings,stopsigns,etc.
Fig.
4
showsqualitativeexamplesofthepathtakenbytherobot.Notethattheoverheadimageandspatiallocalizationofthelandmarksisnotavailabletotherobotandisshownforvisualizationonly.InFig.
4
(a),LM-Navisabletosuccessfullylocalizethesimplelandmarksfromitspriortraversalandfindashortpathtothegoal.Whiletherearemultiplestopsignsintheenvironment,theobjectiveinEqn.
3
causestherobottopickthecorrectstopsignincontext,soastominimizeoveralltraveldistance.Fig.
4
(b)highlightsLM-Nav’sabilitytoparsecomplexinstructionswith
7
Gostraighttowardthewhitebuilding.Continuestraightpassingbyawhitetruckuntilyoureachastopsign.
multiplelandmarksspecifyingtheroute—despitethepossibilityofashorterroutedirectlytothefinallandmarkthatignoresinstructions,therobotfindsapaththatvisitsallofthelandmarksinthecorrectorder.
Disambiguationwithinstructions.SincetheobjectiveofLM-Navistofollowinstructions,andnotmerelytoreachthefinalgoal,differentin-structionsmayleadtodifferenttraversals.Fig.
5
showsanexamplewheremodifyingtheinstruc-tioncandisambiguatemultiplepathstothegoal.Giventheshorterprompt(blue),LM-Navprefersthemoredirectpath.Onspecifyingamorefine-grainedroute(magenta),LM-Navtakesanalter-natepaththatpassesadifferentsetoflandmarks.
Missinglandmarks.WhileLM-Naviseffectiveatparsinglandmarksfrominstructions,localizingthemonthegraph,andfindingapathtothegoal,itreliesontheassumptionthatthelandmarks(i)existintheenvironment,and(ii)canbeidentifiedbytheVLM.Fig.
4
(c)illustratesacasewheretheexecutedpathfailsto
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文物保护样本修复与管理样本管理
- 居民社区智能电梯维护协议
- 学校硅PU施工合同
- 医院消防设施改造合同模板
- 员工行为准则与规范
- 地下矿井降水施工分包协议
- 2022年大学药学专业大学物理二月考试题B卷-含答案
- 2022年大学力学专业大学物理下册期中考试试题B卷-含答案
- 信息技术(基础模块)(麒麟操作系统 WPSOffice)(微课版) 课件 模块6、7 新一代信息技术概述、信息素养与社会责任
- 质量部晋级晋升述职报告
- 同济启明星深基坑支挡结构分析计算7 0 frws7使用手册
- 儿童社区获得性肺炎诊疗规范课件
- 评茶员(高级)资格职业鉴定题库附答案(最新版)
- 大单元教学设计说课稿《4.5 光的衍射》
- 学生实习实训指导书
- 江苏省智慧航道外场感知设施建设技术指南
- (完整版)四年级语文培优辅差记录表
- 国家开放大学《监督学》形考任务(1-4)试题解析和答案
- 祖国万岁朗诵
- 习近平法制思想概论智慧树知到答案章节测试2023年中南财经政法大学
- 不断把人民对美好生活的向往变为现实PPT实现人民对美好生活向往的路径PPT课件(带内容)
评论
0/150
提交评论