版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若解关于x的方程时产生增根,那么常数m的值为()A.4 B.3 C.-4 D.-12.如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A.(-4,0) B.(-1,0) C.(-2,0) D.(-3,0)3.下列各式能利用完全平方公式分解因式的是()A. B. C. D.4.学校为了了解八年级学生参加课外活动兴趣小组的情况,随机抽查了40名学生(每人只能参加一个兴趣小组),将调查结果列出如下统计表,则八年级学生参加书法兴趣小组的频率是()组别书法绘画舞蹈其它人数812119A.0.1 B.0.15 C.0.2 D.0.35.数据60,70,40,30这四个数的平均数是()A.40 B.50 C.60 D.706.若一个正多边形的一个外角是30°,则这个正多边形的边数是()A.9 B.10 C.11 D.127.已知、、是的三边,且满足,则的形状是()A.等腰三角形 B.等边三角形C.直角三角形 D.不能确定8.如图所示,▱ABCD的对角线AC,BD相交于点O,,,,▱ABCD的周长()A.11 B.13 C.16 D.229.数名射击运动员的第一轮比赛成绩如下表所示,则他们本轮比赛的平均成绩是()环数/环78910人数/人4231A.7.8环 B.7.9环 C.8.1环 D.8.2环10.如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形()A.4个 B.5个 C.8个 D.9个二、填空题(每小题3分,共24分)11.计算:=____.12.面积为的矩形,若宽为,则长为___.13.若关于x的分式方程有增根,则k的值为__________.14.已知一组数据4,4,5,x,6,6的众数是6,则这组数据的中位数是_____.15.若a4·ay=a19,则y=_____________.16.反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是_____(用“<“连接).17.关于的一元二次方程有实数根,则的取值范围是_____.18.如图是一次函数y=kx+b的图象,当y<0时,x的取值范围是_________________.三、解答题(共66分)19.(10分)已知在等腰三角形中,是的中点,是内任意一点,连接,过点作,交的延长线于点,延长到点,使得,连接.(1)如图1,求证:四边形是平行四边形;(2)如图2,若,求证:且;20.(6分)已知关于的一元二次方程:;(1)求证:无论为何值,方程总有实数根;(2)若方程的一个根是2,求另一个根及的值.21.(6分)如图1,□ABCD在平面直角坐标系xOy中,已知点、、、,点G是对角线AC的中点,过点G的直线分别与边AB、CD交于点E、F,点P是直线EF上的动点.(1)求点D的坐标和的值;(2)如图2,当直线EF交x轴于点,且时,求点P的坐标;(3)如图3,当直线EF交x轴于点时,在坐标平面内是否存在一点Q,使得以P、A、Q、C为顶点的四边形是矩形?若存在,直接写出点P的坐标;若不存在,请说明理由.图1图2图322.(8分)计算:+--23.(8分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,求这个电视塔的高度AB.(参考数据).24.(8分)请用合适的方法解下列一元二次方程:(1);(2).25.(10分)甲、乙两位运动员在相同条件下各射靶10次,毎次射靶的成绩情况如图.(1)请填写下表:(2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:平均数方差中位数命中9环以上的次数(包括9环)甲71.21乙5.47.5(3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)26.(10分)已知两条线段长分别是一元二次方程的两根,(1)解方程求两条线段的长。(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。(3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。
参考答案一、选择题(每小题3分,共30分)1、D【解析】
方程两边同乘,将分式方程化为整式方程,解整式方程,再由增根为2,建立关于m的方程求解即可.【详解】解得∵原分式方程的增根为2∴∴故选:D【点睛】本题考查分式方程的增根问题,熟练掌握解分式方程,熟记增根的定义建立关于m的方程是解题的关键.2、C【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标并根据三角形中位线定理得出CD//x轴,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【详解】解:连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示在中,当y=0时,,解得x=-8,A点坐标为,当x=0时,,B点坐标为,∵点C、D分别为线段AB、OB的中点,∴点C(-4,3),点D(0,3),CD∥x轴,∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-3),点O为线段DD′的中点.
又∵OP∥CD,
∴OP为△CD′D的中位线,点P为线段CD′的中点,∴点P的坐标为,故选:C.【点睛】本题考查轴对称——最短路径问题,一次函数图象与坐标轴交点问题,三角形中位线定理.能根据轴对称的性质定理找出PC+PD值最小时点P的位置是解题的关键.3、B【解析】
根据完全平方公式的特点逐一判断以上选项,即可得出答案.【详解】(1)不符合完全平方公式的特点,故本选项错误;(2)=,故本选项正确;(3)不符合完全平方公式的特点,故本选项错误;(4)不符合完全平方公式的特点,故本选项错误。因此答案选择B.【点睛】本题考查的是利用完全平方公式进行因式分解,重点需要掌握完全平方公式的特点:首尾皆为平方的形式,中间则是积的两倍.4、C【解析】
根据频率=频数数据总和即可得出答案.【详解】解:40人中参加书法兴趣小组的频数是8,
频率是8÷40=0.2,可以用此频率去估计八年级学生参加舒服兴趣小组的频率.
故选:C.【点睛】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和,频率=频数数据总和.5、B【解析】
用四个数的和除以4即可.【详解】(60+70+40+30)÷4=200÷4=50.故选B.【点睛】本题重点考查了算术平均数的计算,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn).6、D【解析】
首先根据题意计算正多边形的内角,再利用正多边形的内角公式计算,即可得到正多边的边数.【详解】根据题意正多边形的一个外角是30°它的内角为:所以根据正多边形的内角公式可得:可得故选D.【点睛】本题主要考查正多边形的内角公式,是基本知识点,应当熟练掌握.7、B【解析】
根据完全平方公式把等式进行变形即可求解.【详解】∵∴则=0,故a=b=c,的形状等边三角形,故选B.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的变形.8、D【解析】
根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.【详解】因为▱ABCD的对角线AC,BD相交于点O,,所以OE是三角形ABD的中位线,所以AD=2OE=6所以▱ABCD的周长=2(AB+AD)=22故选D【点睛】本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.9、C【解析】由题意可知:这些运动员本轮比赛的平均成绩为(环).故选C.10、D【解析】
首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,CD∥AB,又∵EF∥BC,GH∥AB,∴∴AB∥GH∥CD,AD∥EF∥BC,∴平行四边形有:□ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.故选D.【点睛】本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.二、填空题(每小题3分,共24分)11、4【解析】
根据二次根式的性质化简即可.【详解】原式=.故答案为:4.【点睛】本题考查了二次根式的性质,熟练掌握是解答本题的关键.12、2【解析】
根据矩形的面积公式列式计算即可.【详解】解:由题意,可知该矩形的长为:÷==2.
故答案为2【点睛】本题考查了二次根式的应用,掌握矩形的面积公式以及二次根式的除法法则是解题的关键.13、或【解析】
分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出的值,代入整式方程求出的值即可.【详解】解:去分母得:,整理得:由分式方程有增根,得到,解得:或,把代入整式方程得:;把代入整式方程得:,则的值为或.故答案为:或【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14、1.1【解析】
这组数据4,4,1,,6,6的众数是6,说明6出现的次数最多,因此,从小到大排列后,处在第3、4位两个数据的平均数为,因此中位数是1.1.【详解】解:这组数据4,4,1,,6,6的众数是6,,,故答案为:1.1.【点睛】考查众数、中位数的意义及求法,明确众数、中位数的意义,掌握众数、中位数的求法是解决问题的前提.15、1【解析】
利用同底数幂相乘,底数不变指数相加计算,再根据指数相同列式求解即可.【详解】解:a4•ay=a4+y=a19,∴4+y=19,解得y=1故答案为:1.【点睛】本题主要考查同底数幂相乘,底数不变指数相加的性质,熟练掌握性质是解题的关键.16、.【解析】
根据反比例函数的k确定图象在哪两个象限,再根据(x1,y1),(x2,y2),其中,确定这两个点均在第一象限,根据在第一象限内y随x的增大而减小的性质做出判断.【详解】解:反比例函数y=图象在一、三象限,(x1,y1),(x2,y2)在反比例函数y=图象上,且,因此(x1,y1),(x2,y2)在第一象限,∵反比例函数y=在第一象限y随x的增大而减小,∴,故答案为:.【点睛】本题考查了反比例函数的增减性,熟悉反比例函数的图象与性质是解题的关键.17、或【解析】
根据一元二次方程根的判别式与根的情况的关系,求解判别式中的未知数.【详解】一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即,当时,方程有2个实数根,当时,方程有1个实数根(2个相等的实数根),当时,方程没有实数根.一元二次方程有实数根,则,可求得或.【点睛】本题考查根据一元二次方程根的判别式.18、【解析】
根据函数图象与x轴的交点坐标,当y<0即图象在x轴下侧,求出即可.【详解】当y<0时,图象在x轴下方,∵与x交于(1,0),∴y<0时,自变量x的取值范围是x<1,故答案为:x<1.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是运用观察法求自变量取值范围通常是从交点观察两边得解.三、解答题(共66分)19、(1)见解析;(2)见解析;【解析】
(1)利用平行线的性质证明,即可解答(2)连接,根据题意得出,再由(1)得出,得到是的中位线,即可解答【详解】(1)证明:.是的中点,.又,(ASA)..又,四边形是平行四边形.(2)证明:如图1,连接,图1是的中点,...由(1)知,,又由(1)知,.,是的中位线..,.【点睛】此题考查等腰三角形的性质,平行线的性质,全等三角形的判定与性质,解题关键在于作辅助线20、(1)详见解析;(2),【解析】
(1)根据根的判别式得出△=(k﹣3)2≥0,从而证出无论k取任何值,方程总有实数根.(2)先把x=2代入原方程,求出k的值,再解这个方程求出方程的另一个根.【详解】(1)证明:(方法一).∴无论为何值时,方程总有实数根.(方法二)将代人方程,等式成立,即是原方程的解,因此,无论为何值时,方程总有实数根,(2)把代人方程解得,解方程得【点睛】本题主要考查了一元二次方程的根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21、(1)(2,−2),7;(2)点P的坐标为(,−)或(−,);(3)点P的坐标为(3,0)或(−1,2)或(,−)或(−,).【解析】
(1)根据平行线的性质可求点D的坐标,根据重心的定义可得S四边形BEFC=S▱ABCD从而求解;(2)分两种情况:①点P在AC左边,②点P在AC右边,进行讨论即可求解;(3)先作出图形,再根据矩形的性质即可求解.【详解】解:(1)∵▱ABCD在平面直角坐标系xOy中,点A(−1,0)、B(0,4)、C(3,2),∴点D的坐标为(2,−2),∴S▱ABCD=6×4−×1×4−×3×2−×1×4−×3×2=14,∵点G是对角线AC的中点,∴S四边形BEFC=S▱ABCD=7;(2)∵点G是对角线AC的中点,∴G(1,1),设直线GH的解析式为y=kx+b,则,解得,∴直线GH的解析式为y=−x+;①点P在AC右边,S△ACH=×6×2=6,∵S△PAC=S四边形BEFC,1+4×=,当x=时,y=−×+=−,∴P(,−);②点P在AC左边,由中点坐标公式可得P(−,);综上所述,点P的坐标为(,−)或(−,);(3)如图,设直线GK的解析式为y=kx+b,则,解得,则直线GK的解析式为y=−x+,CP⊥AP时,点P的坐标为(3,0)或(−1,2);CP⊥AC时,直线AC的解析式为y=x+,直线CP的解析式为y=−2x+8,故点P的坐标为(,−);AP⊥AC时,同理可得点P的坐标为(−,);综上所述,点P的坐标为(3,0)或(−1,2)或(,−)或(−,).【点睛】本题考查四边形的综合题、矩形的性质、三角形和四边形的面积等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会用方程的思想思考问题,属于中考压轴题.22、2+3【解析】
根据二次根式的运算法则即可求出答案.【详解】原式=4+3﹣﹣=2+3【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算,本题属于基础题型.23、87.6米【解析】
根据题意并结合图象运用解直角三角形中的勾股定理进行分析求解即可.【详解】解:由题意结合图象,∵,∴,∵米,∴CE=AE=100米,米,∴AG(米),∵米,∴AB86.6+1=87.6(米).【点睛】本题考查解直角三角形的应用,解题的关键是根据仰角构造直角三角形,利用三角函数求解.24、(1),;(2),.【解析】
(1)根据直接开平方法即可求解;(2)根据因式分解法即可求解.【详解】解:(1),x=±2∴,.(2),∴x+3=0或x-1=0∴,.【点睛】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的应用.25、(1)见解析;(2)甲的成绩比乙稳定;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度教育咨询服务办学许可证转让及服务协议3篇
- 2025年临时用工合作协议确保二零二五年度客户服务品质3篇
- 2025年二零二五企业仓储物流场地租赁服务合同3篇
- 2025年度年度影视行业兼职演员聘用协议2篇
- 二零二五年度销售团队保密责任协议
- 2025年度新型城镇化工程款结算与进度管理协议3篇
- 2025年度全新竞业协议解除后一个月竞业限制合同3篇
- 二零二五年度新能源汽车购买协议3篇
- 2025年度公司与个人合作代收代付电商业务合同模板3篇
- 二零二五年度农产品电商平台用户行为分析合作协议3篇
- 2024年辽宁经济职业技术学院单招职业倾向性测试题库附答案
- 启明计划工信部青年人才
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 居家服侍老人协议书
- 2024年-(多附件条款版)个人汽车租赁给公司合同电子版
- 建工意外险培训课件
- 三年级必读书目《格林童话》阅读测试题(附答案)
- 人口老龄化社会的挑战与机遇
- 三级(高级)电子商务师理论考试题库含答案
- 社区宣传工作方案及措施
- 安全教育主题班会:防恐怖、防极端、防不法侵害
评论
0/150
提交评论