




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
碳化硅纤维行业研究:航空发动机热端结构理想材料1.陶瓷基复合材料(CMC)是理想的高温结构材料陶瓷基复合材料性能优异,是理想的高温结构材料。陶瓷基复合材料(CMC)是指在陶瓷基体中引入增强材料,形成以引入的增强材料为分散相,以陶瓷基体为连续相的复合材料。连续纤维增强陶瓷基复合材料保留了陶瓷材料耐高温、抗氧化、耐磨耗、耐腐蚀等优点的同时,充分发挥陶瓷纤维增强增韧作用,克服了陶瓷材料断裂韧性低和抗外部冲击载荷性能差的先天缺陷。这类材料已成为航空航天、军事、医疗等多领域理想的高温结构材料,广泛应用于飞机发动机喷管、机翼护罩、导弹喷管、电磁窗、翼尖、尾舵、发动机涡轮等部件。相对于其他材料体系,陶瓷基复合材料具有以下优点:(1)轻质。陶瓷基复合材料密度低(仅为高温合金的1/3~1/4),可用于燃烧室、调节片/密封片等部件,能够直接减轻质量50%左右。(2)耐高温。陶瓷基复合材料的工作温度高达1650℃,能够简化甚至省去冷却结构,优化发动机结构,提高发动机工作温度和使用寿命。在无冷却结构的条件下,可以在1200℃长期使用。(3)优异的高温抗氧化性能。陶瓷基复合材料能够在高温环境,甚至是有氧环境下保持较高的稳定性,降低了热防护涂层的研制和应用成本。(4)优异力学性能。通过制备工艺优化,特别是界面层组分和结构设计,陶瓷基复合材料的力学性能相对于单相陶瓷而言,有了质的提升。陶瓷基复合材料通常由增强纤维、界面层和陶瓷基体3部分组成,其性能由各部分本身性能及相互作用共同决定。下面三小节将详细介绍各部分的主要材料及对陶瓷基复合材料性能的影响。1.1.陶瓷基体是复合材料重要的组成部分陶瓷基体是复合材料重要的组成部分之一,其主要成分和结构对材料综合性能具有重要的影响。一方面,陶瓷基体最先暴露于工作环境中,需承受温度、粒子、水氧等服役环境的考核;另一方面,在外部冲击载荷作用下陶瓷基体最先承力并出现裂纹,其裂纹扩展方式是影响复合材料稳定性的重要因素。能够用作陶瓷基复合材料基体的陶瓷主要有3类:(1)以石英玻璃为代表的玻璃陶瓷基体,如钙铝硅酸盐玻璃、锂铝硅酸盐玻璃、镁铝硅酸盐玻璃、硼硅酸盐及石英玻璃;(2)以Al2O3基为代表的氧化物基体材料,如Al2O3、钇铝石榴石、ZrO2·TiO2基、ZrO2·Al2O3基等材料体系;(3)以SiC基陶瓷为代表的非氧化物基体,包括SiC、Si3N4、BN以及Si-C-B-N复相陶瓷等,该类材料具有强度高、硬度高、耐高温性能优异的特点。1.2.增强纤维为主承力部分,对材料性能起决定性作用纤维作为复合材料的主要承力部分,对材料的性能具有决定性作用。其影响因素包括:纤维型号、纤维的体积含量以及纤维的编织方法等。由于陶瓷材料脆性强,若想要最大化发挥陶瓷材料的优点应用在更广阔的领域,必须对其进行增韧处理。常采用连续纤维增韧陶瓷基体,而高温复合材料的增强体必须具备耐高温、高强度和优异的介电性能等特点,以发挥纤维的增韧作用。常见的增强纤维包括石英纤维、碳纤维、碳化硅纤维、氧化物纤维等。1.3.界面层作为纽带,影响复材增韧效果界面层是连接增强相纤维和连续相基体的纽带,界面层组分和结构决定纤维与基体之间的结合强度,决定了增韧效果。陶瓷基复合材料在外部载荷作用下的断裂行为主要包括裂纹偏转、微裂纹形成、界面解离、纤维断裂以及纤维拔出等形式,其中纤维拔出是最重要的能量释放途径,而界面解离是纤维由基体拔出的前提条件。若界面结合力较强,陶瓷纤维难以起到增韧的效果,导致材料在外部载荷冲击下出现脆性断裂;若界面结合强度过低,基体无法通过界面将外部载荷传递到陶瓷纤维上,难以起到增强的作用。陶瓷基复合材料的可设计性很大程度源于界面层,理想的界面层应具有以下功能:(1)在制备过程中抑制或阻止物理收缩和化学反应对陶瓷纤维损伤;(2)缓解纤维与基体间界面残余热应力;(3)在复合材料遭受外部载荷冲击时,将载荷由基体传递至纤维,起到载荷传递作用;(4)改善界面结合强度,充分发挥界面解离、纤维拔出等能量耗散机制,使复合材料断裂时呈现假塑性特征。近年来用于复合材料制备的界面层体系主要有热解碳界面层(PyC)、BN界面层、复合界面层。2.碳化硅纤维及SiC/SiC复合材料本章将主要介绍碳化硅纤维以及连续碳化硅纤维增强碳化硅陶瓷基复合材料(SiC/SiC复合材料)的制备工艺和研制情况。2.1.碳化硅(SiC)纤维碳化硅纤维性能良好,常用作耐高温材料和增强材料。碳化硅纤维是一种以碳和硅为主要成分的高性能陶瓷材料,从形态上分为晶须和连续碳化硅纤维,具有高温耐氧化性、高硬度、高强度、高热稳定性、耐腐蚀性和密度小等优点。与碳纤维相比,在极端条件下,碳化硅纤维能够保持良好的性能。由于其具有良好的性能,在航空航天、军工武器装备等高科技领域备受关注,常用作耐高温材料和增强材料。2.1.1.碳化硅纤维制备工艺碳化硅纤维的制备方法主要有先驱体转化法、化学气相沉积法(CVD)和活性炭纤维转化法3种。3种制备方法各有优缺点,而且使用不同制备方法制备的碳化硅纤维也具有不同的性能。先驱体转化法是目前主要采用的碳化硅纤维研制方法。先驱体转化法是由日本东北大学矢岛教授等人于1975年研发,包括先驱体合成、熔融纺丝、不熔化处理与高温烧结4大工序,先驱体转化法制备碳化硅纤维需要先合成先驱体——聚碳硅烷
(PCS)。日本、美国等国家的材料制造公司积极利用该法将碳化硅纤维进行工业化生产,逐渐形成了3代碳化硅纤维。先驱体转化法制备碳化硅纤维是目前采用比较广泛的一种方法,技术相对成熟、生产效率高、成本低,适合于工业化生产。化学学气相沉积法(CVD法)制备碳化硅纤维纯度较高,但由于直径较粗,较难织成复合材料。CVD法的基本原理就是在连续的钨丝或碳丝芯材上沉积碳化硅。该方法的制备过程中,利用碳丝更为合适。一方面,碳的质量比钨的质量小,可以制得更轻的碳化硅纤维;另一方面,钨与碳化硅会发生化学反应,使得在高温环境下碳化硅纤维的强度变差。在碳丝上沉积碳化硅能够得到更稳定的碳化硅纤维及其复合材料。CVD法制备的碳化硅纤维的纯度比较高,因此纤维在高温下的强度、抗蠕变、稳定性等性能良好。但是,与先驱体转化法相比,CVD法制备的碳化硅纤维直径较粗,无法进行编织,因此在利用纤维制成复合材料时比较困难。活性炭纤维转化法原料价格低廉,制备过程相对简单,适合工业化生产。活性炭纤维转化法是在先驱体转化法和CVD法之后被研发出来的。主要包括制备活性炭纤维、高温反应气态氧化硅、热处理生产碳化硅纤维三步。因为制备活性炭纤维的原材料价格比较低廉,并且制备过程也比较简单,所以利用活性炭纤维转化法制备碳化硅纤维的成本较低。与先驱体转化法和CVD法相比,该方法更适用于工业化生产碳化硅纤维。此外,利用活性炭纤维转化法制备碳化硅纤维主要由碳化硅微晶构成,氧含量仅占5.9%。由于氧含量的大大降低,纤维的抗拉强度变大,能达到1000MPa以上。2.1.2.SiC纤维研制历经三代,国内技术达到国际水平三代碳化硅纤维均已实现工业化生产,日本碳公司和宇部公司总产量占全球80%。根据结构组成和性能,SiC纤维主要分为三代。目前国际上SiC纤维的生产企业主要集中在日本,包括日本碳公司(NipponCarbon)和日本宇部公司(UbeIndustries)。两家公司的总产量占到全球的80%左右。目前第一代、第二代和第三代SiC纤维均实现了工业化生产,其中NipponCarbon公司的纯SiC纤维(牌号Nicalon)和UbeIndustries公司的含钛、含锆、含铝等类型的SiC纤维(牌号Tyranno)产量均达到100吨级,且基本保持稳定。国内SiC纤维技术达到国际水平,工业化能力仍有差距。目前,国内研制单位主要包括国防科技大学、厦门大学(含火炬电子科技股份有限公司)。总体而言,国内已经实现第二代、第三代SiC关键技术,但由于基础研究起步较晚,虽然取得了显著进步,但在质量稳定性和工业化能力方面与日本等发达国家的先进水平差距巨大。上世纪80年代开始,国防科技大学在实验室开展先驱体热解转化方法制备SiC纤维的研究,经过近30年的艰难攻关,攻克了先驱体PCS的合成、多孔熔融纺丝、原丝不熔化及连续纤维高温烧成等关键技术,制得了第一代连续SiC纤维(KD-I型纤维),纤维性能与日本Nicalon纤维性能相当。近年来,通过改进先驱体合成方法,建立非氧气氛不熔化处理方法(电子束辐照方法与活性气氛不熔化方法),制得了低氧含量的SiC纤维。通过制备工艺的改进,制得了第二代连续SiC纤维(KD-II型SiC纤维),性能相当于日本碳公司Hi-Nicalon水平,并已建立了中试生产线。厦门大学于2000年后也开展了SiC纤维的相关研究。在第三代SiC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 目送说课课件图片大全
- 面向低速水流能高效俘获的扑翼式水力发电机高效俘能技术研究
- 【2025年】浙江省绍兴市【辅警协警】笔试预测试题含答案
- 师德演讲课件
- 动物解剖生理试题(附答案)
- 呼吸机患者护理安全防范
- 糖尿病足病患者个案护理探讨
- 2025年四川省南溪县事业单位公开招聘辅警考试题带答案分析
- 新民法典基础知识在线测试题库(含参考答案)
- 工程部年度计划课件模板
- QC小组活动记录【范本模板】
- GB/T 41813.1-2022信息技术智能语音交互测试方法第1部分:语音识别
- SB/T 10569-2010冷藏库门
- GB/T 3683-2011橡胶软管及软管组合件油基或水基流体适用的钢丝编织增强液压型规范
- GB/T 3003-2017耐火纤维及制品
- 二维动画课件
- 经济责任审计报告
- 2022年养殖场动物疫情报告制度
- 贵港市国有建设用地改变土地使用条件方案
- 部编人教版八年级上册历史全册课件
- 卡特CAT3406C发动机中文培训
评论
0/150
提交评论