初三九年级上册数学的知识点归纳优秀3篇_第1页
初三九年级上册数学的知识点归纳优秀3篇_第2页
初三九年级上册数学的知识点归纳优秀3篇_第3页
初三九年级上册数学的知识点归纳优秀3篇_第4页
初三九年级上册数学的知识点归纳优秀3篇_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页初三九年级上册数学的知识点归纳优秀3篇在我们平凡无奇的学生时代,大家对知识点应该都不陌生吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。为了帮助大家更高效的学习,这次帅气的我为您整理了3篇《初三九年级上册数学的知识点归纳》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。

初三九年级上册数学的知识点归纳篇一

九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。本册书内容分析如下:

第21章二次根式

学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式一章就来认识这种式子,探索它的性质,掌握它的运算。

在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:

注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到并运用它们进行二次根式的化简。

二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。

第22章一元二次方程

学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,

22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

(1)在介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。

(2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

第23章旋转

学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。旋转一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。

23.1旋转一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。

23.2中心对称一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。

23.3课题学习图案设计一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。

第24章圆

圆是一种常见的图形。在圆这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。

24.1圆一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。

24.2与圆有关的位置关系一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明在同一直线上的三点不能作圆引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。

24.3正多边形和圆一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。

24.4弧长和扇形面积一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。

第25章概率初步

将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了概率一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。

25.1概率一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。

25.2用列举法求概率一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。

25.3利用频率估计概率一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。

25.4课题学习键盘上字母的排列规律一节让学生通过这一课题的研究体会概率的广泛应用。

初三九年级上册数学的知识点归纳篇二

一、等腰三角形

1、定义:有两边相等的三角形是等腰三角形。

2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)

2、等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)

3、等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)

4、等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。

5、等腰三角形的一腰上的高与底边的夹角等于顶角的一半

6、等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)

7、等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴

3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

特殊的等腰三角形

等边三角形

1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。

(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

2、性质:⑴等边三角形的内角都相等,且均为60度。

⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

3、判定:⑴三边相等的三角形是等边三角形。

⑵三个内角都相等的三角形是等边三角形。

⑶有一个角是60度的等腰三角形是等边三角形。

⑷有两个角等于60度的三角形是等边三角形。

二、直角三角形全等

1、直角三角形全等的判定有5种:

(1)、两角及其夹边对应相等的两个三角形全等;(asa)

(2)、两边及其夹角对应相等的两个三角形全等;(sas)

(3)、三边对应相等的两个三角形全等;(sss)

(4)、两角及其中一角的对边对应相等的两个三角形全等;(aas)

(5)、斜边及一条直角边对应相等的两个三角形全等;(hl)

2、在直角三角形中,如有一个内角等于30,那么它所对的直角边等于斜边的一半

3、在直角三角形中,斜边上的中线等于斜边的一半

4垂直平分线:垂直于一条线段并且平分这条线段的直线。

性质:线段垂直平分线上的点到这一条线段两个端点距离相等。

判定:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

5、三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,交点为三角形的外心。

6、角平分线上的点到角两边的距离相等。

7、在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

8、角平分线是到角的两边距离相等的所有点的集合。

9、三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

10、三角形三条中线交于一点,交点为三角形的重心。

11、三角形三条高线交于一点,交点为三角形的垂心。

三、平行四边的定义

1、定义:两线对边分别平行的四边形叫做平行四边形,

2、性质:(1)平行四边形的对边相等,(2)对角相等,(3)对角线互相平分。

3、判定:(1)一组对边平行且相等的四边形是平行四边形。

(2)两条对角线互相平分的四边形是平行四边形。

(3)两组对边分别相等的四边形是平行四边形。

(4)两组对角分别相等的四边形是平行四边形。

(5)一组对边平行,一组对角相等的四边形是平行四边形。

(6)一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形。

两个假命题:(1)一组对边平行,另一组对边相等的四边形是平行四边形。

(2)一组对边相等,一组对角相等的四边形是平行四边形。

四、矩形

1、定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

2、性质:(1)具有平行四边形的性质,(2)对角线相等,(3)四个角都是直角。

(4)矩形是轴对称图形,有两条对称轴。

3、判定:(1)有三个角是直角的四边形是矩形。

(2)对角线相等的平行四边形是矩形。

五、菱形

1、定义:一组邻边相等的平行四边形叫做菱形。

2、性质:(1)具有平行四边形的性质,(2)四条边都相等,(3)两条对角线互相垂直,每一条对角线平分一组对角。(4)菱形是轴对称图形,每条对角线所在的直线都是对称轴。

3、判定:(1)四条边都相等的四边形是菱形。

(2)对角线互相垂直的平行四边形是菱形。

(3)一条对角线平分一组对角的平行四边形是菱形。

六、正方形

1、定义:一组邻边相等且有一个角是直角的平行四边形叫做正方形。

2、性质:正方形具有平行四边形、矩形、菱形的一切性质。

3、判定:(1)有一个内角是直角的菱形是正方形;

(2)有一组邻边相等的矩形是正方形;

(3)对角线相等的菱形是正方形;

(4)对角线互相垂直的矩形是正方形。

七、梯形定义:

一组对边平行且另一组对边不平行的四边形叫做梯形。

八、等腰梯形

1、定义:两条腰相等的梯形叫做等腰梯形。

2、性质:等腰梯形同一底上的两个内角相等,对角线相等。

3、同一底上的两个内角相等的梯形是等腰梯形。

九、三角形的中位线

定义:连接三角形两边中点的线段。

性质:平行于第三边,并且等于第三边的一半。

十、梯形的中位线

定义:连接梯形两腰中点的线段。

性质:平行于两底,并且等于两底和的一半。

初三九年级上册数学的知识点归纳篇三

一、圆周角定理

在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

①定理有三方面的意义:

a.圆心角和圆周角在同一个圆或等圆中;(相关知识点如何证明四点共圆)

b.它们对着同一条弧或者对的两条弧是等弧

c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半。

②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半。

二、圆周角定理的推论

推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等

推论2:半圆(或直径)所对的圆周角等于90°;90°的圆周角所对的弦是直径

推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形

三、推论解释说明

圆周角定理在九年级数学知识点中属于几何部分的重要内容。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论