版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
毕业设计说明书基于单片机的串口通信模块设计
TOC\o"1-3"\u
1绪论1.1研究背景通信是指不同的独立系统利用线路互相交换数据,它的主要目的是将数据从一端传送到另一端,实现数据的交换。在现代工业控制中,通常采用计算机作为上位机与下层的实时控制与监测设备进行通讯。现场数据必须通过一个数据收集器传给上位机,同样上位机向现场设备发命令也必须通过数据收集器。串行通信因其结构简单、执行速度快、抗干扰能力强等优点,已被广泛应用于数据采集和过程控制等领域。计算机与外界的信息交换称为通信。基本的通信方式有并行通信和串行通信两种。串行通信是指一条信息额各位数据被逐位按顺序传送的通信方式。串行通信的特点是:数据位传送,按位顺序进行,最少只需要一根传输线即可完成,成本低但传送速度快,串行通信的距离可以从几米到几千米。随着计算机技术尤其是单片微型机技术的发展,人们已越来越多地采用单片机来对一些工业控制系统中如温度、流量和压力等参数进行监测和控制。PC机具有强大的监控和管理能力,而单片机则具有快速及灵和的控制特点,通过PC机的RS-232串行接口与外部设备进行通信,是许多测控系统中常用的一种通信解决方案。而随着USB接口技术的成熟和使用的普及,由于USB接口有着RS-232(DB-9)串口无法比拟的优点,RS-232(DB-9)串口正在逐步地为USB接口所替代。而在现在的大多数笔记本电脑中,出于节省物理空间和用处不大等原因,RS-232(DB-9)串口已不再设置,这就约束了基于RS-232(DB-9)串口与PC机联络的单片机设备的使用范围。当前USB接口逐步取代RS-232(DB-9)串口已是大势所趋,单片机同计算机的USB通信在实际工作中的应用范围也将越来越广。本文所介绍的单片机和PC机的USB通信方法,电路简单,兼容性好,可移植性强,故可作为单片机同计算机的USB通信模块广泛应用于工业和电子产品的开发中。因此研究如何实现PC机与单片机通过USB之间的通信具有非常重要的现实意义。1.2国内外研究现状由于计算机工业自动控制和检测系统越来越多地采用集总分散系统,而主从式是其中最为普遍的一种方式,因此各种各样主从式总线通信系统的方法不断涌现。目前比较常用的有利用IIC总线传输协议设计的主从式总线通信系统,还有的是利用SPI总线传输协议和USB协议以及串口通信等设计的主从式总线通信系统[6,7]。由于主从式总线通信系统采用的方法众多,因此目前国内外一般是根据实际情况而采用不同的方法去实现主从式通信系统的功能[8]。比如,如果要设计的主从式通信系统只是小范围内传送数据,甚至只是板间传送数据,或者要求使用的I/O口很少,而对于数据的抗干扰能力的要求不是很高的话,则采用IIC总线传输协议是最合适不过的了。IIC总线支持任何一种IC制造工艺,并且PHILIPS和其他厂商提供了种类非常丰富的I2C兼容芯片。作为一个专利的控制总线,IIC已经成为世界性的工业标准。每个器件都有一个唯一的地址,而且可以是单接收的器件(例如:LCD驱动器)或可以接收也可以发送的器件(例如:存储器)。发送器或接收器可以在主模式或从模式下操作,这取决于芯片是否必须启动数据的传输还是仅仅被寻址。IIC是一个多主总线,即它可由多个连接的器件控制[9]。基本的I2C总线规范于20年前发布,其数据传输速率最高为100Kbits/s,采用7位寻址。但是由于数据传输速率和应用功能的迅速增加,I2C总线也增强为快速模式(400Kbits/s)和10位寻址以满足更高速度和更大寻址空间的需求[10]。IIC总线始终和先进技术保持同步,但仍然保持其向下兼容性。并且最近还增加了高速模式,其速度可达3.4Mbits/s。它使得IIC总线能够支持现有以及将来的高速串行传输应用,例如EEPROM和Flash存储器[11]。而如果需要远距离传输数据,且对数据传送的抗干扰能力要求有点高,则可以使用RS-422或者RS-485协议进行主从式通信系统的设计[12]。另外,USB协议则是一种比较新型、快速、灵活的总线传输方法,此通信系统通常只有一个主机,利用此方法设计的通信息有如下特点:(1)适用范围广泛,适用于数码相机,高速数据采集等多种设备;(2)支持热拔插,且此过程由系统自动完成,无需用户干预;(3)采用菊花链式的星型总线结构,支持多达127个外设同时连接;(4)5Mbps、12Mbps和480Mbps的3种速度模式,可以满足不同外设对速度的要求。USB发展到今天,总共有三种标准:1996年发布的USB1.0,1998年发布的USB1.1以及刚刚发布的最新标准USB2.0,此三种标准最大的差别就在于数据传输率方面,在其他方面也不同程度的改进,总体来说,就目前的USB2.0而言,已经拥有什么出众的性能与传输速率。USB数据线由两对线组成,一对电力线,通过电力线可以为USB设备提供5V电压,允许通过最大电流为500mA,这个数字不算很大,但好在聊胜于无,可以满足一些耗电量较少的设备的需求,通过特殊的USB互联设备,我们还可以用USB口实现双机联网,速度是USB1.1的标准达12Mbps(1.5MB/S),可惜仅能进行简单的数据交换,不能称作真正的网络[13,14]。当所要设计的主从式总线通信系统采用譬如MSP430单片机当主机或者从机时,由于此单片机具有支持SPI的片内串行通信接口,所以可以采用SPI总线传输协议进行设计。SPI是英语SerialPeripheralInterface的缩写,顾名思义就是串行外围设备接口[15]。是Motorola首先在器MC68HCXX系列处理器上定义的[16]。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200。串行外围设备接口SPI是一种同步串行接口,因其硬件功能强,与SPI有关的软件就相当简单,可使MSP430单片机有更多的时间处理其他任务。此时,所设计的系统拥有极低的功耗,丰富的片内外设,卓越的工作性能和方便灵活等优点[17]。1.3本课题研究的主要内容(1)串行通信原理介绍;(2)USB技术原理分析;(3)单片机和PC机通过USB实现串行通信设计与实现。本设计主要包含以下两个方面:(1)硬件设计:单片机及外围电路设计;(2)软件设计:单片机的通信控制程序,PC机的通信程序。2串行通信基础2.1串口通信的基本知识2.1.1并行通信与串行通信微机的信息交换有两种方式进行:串行通信方式和并行通信方式。1.串行通信串行通信的设备是最古老的沟通机制之一。从IBM个人电脑和兼容式电脑的时代开始,几乎所有的计算机都配有一个或多个串行端口和一个并行端口。顾名思义,一个串行端口发送和接收串行数据,一次一位数据。相反,一个并行端口一次发送和接收8位数据,使用8个单独的线路。提示:要使串行通信工作,你只需要一根三根线的电缆——1根发送,1根用来接收,1根接地。对于并行通信,你需要采用8条导线。尽管相对较慢的传输速度远低于并行端口,串行端口通信依然因为它简单的设备、高的成本效益以及差错可控性强而成为一个受欢迎的连接选项。图2-1显示了使用串行口连接到计算机的设备。图2-1一些常见的串行设备,调制解调器,鼠标和路由器虽然今天的消费产品中在串行连接的地方使用USB连接,但还有很多的设备使用串行端口作为与外部世界的唯一连接。一个串行设备一次发送和接收一位数据,有些设备因为在同一时间发送和接收数据,被称为全双工设备。其他可以在任何时间发送或接收被称为单双工。开始传输时,设备先发送一个起始位,其次是数据位。该数据位可以是五,六,七,或8位,基于商定而定。两个发送方和接收器必须设置为相同的数据通信比特或正确的比特率。数据位被发送完后,就会发送一个停止位。一个停止位可以是一位,一个半位,或两位。波特率是数据从一个设备到另一个的传输速度。波特率通常以每秒的位数(bps)来计量。注意:大多数串行设备传输七,八位数据。为了检测数据已被正确发送,一个可选的校验位可以同数据位在一起。一个校验位可以是以下内容:奇数,偶数,mark,space或无(空的奇偶位标志几乎总是被使用)。使用校验位提供了一个基本的机制,以检测已发送数据损坏,但不保证检查数据本身的错误。然而,校验位可用于改善完整性数据传送。大多数串行端口使用RS232C标准,它指定了一个连接器25针或9针(见图2-2)。大多数系列设备使用9针连接器。图2-225针和9针串行接口2.并行通信在计算机和终端之间的数据传输通常是靠电缆或信道上的电流或电压变化实现的。如果一组数据的各数据位在多条线上同时被传送,这种传输被称为并行通信,如图2-3所示。并行通信时数据的各个位同时传送,可以字或字节为单位并行进行。并行通信速度快,但用的通信线多、成本高,故不宜进行远距离通信。计算机或PLC各种内部总线就是以并行方式传送数据的。图2-3并行通信2.1.2串行通信工作模式如果在通信过程的任意时刻,信息只能由一方A传到另一方B,则称为单工。如果在任意时刻,信息既可由A传到B,又能由B传A,但只能由一个方向上的传输存在,称为半双工传输。如果在任意时刻,线路上存在A到B和B到A的双向信号传输,则称为全双工。电话线就是二线全双工信道。由于采用了回波抵消技术,双向的传输信号不致混淆不清。双工信道有时也将收、发信道分开,采用分离的线路或频带传输相反方向的信号,如回线传输。在串行通信中,数据通常是在两个站(如终端和微机)之间进行传送,按照数据流的方向可分成三种基本的传送方式:全双工、半双工、和单工。但单工目前已很少采用,下面仅介绍前两种方式。1.半双工方式若使用同一根传输线既作接收又作发送,虽然数据可以在两个方向上传送,但通信双方不能同时收发数据,这样的传送方式就是半双工制,如图2-4所示。采用半双工方式时,通信系统每一端的发送器和接收器,通过收/发开关转接到通信线上,进行方向的切换,因此,会产生时间延迟。收/发开关实际上是由软件控制的电子开关。图2-4半双工方式当计算机主机用串行接口连接显示终端时,在半双工方式中,输入过程和输出过程使用同一通路。有些计算机和显示终端之间采用半双工方式工作,这时,从键盘打入的字符在发送到主机的同时就被送到终端上显示出来,而不是用回送的办法,所以避免了接收过程和发送过程同时进行的情况。目前多数终端和串行接口都为半双工方式提供了换向能力,也为全双工方式提供了两条独立的引脚。在实际使用时,一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。2.全双工方式当数据的发送和接收分流,分别由两根不同的传输线传送时,通信双方都能在同一时刻进行发送和接收操作,这样的传送方式就是全双工制,如图2-5所示。在全双工方式下,通信系统的每一端都设置了发送器和接收器,因此,能控制数据同时在两个方向上传送。全双工方式无需进行方向的切换,因此,没有切换操作所产生的时间延迟,这对那些不能有时间延误的交互式应用(例如远程监测和控制系统)十分有利。这种方式要求通讯双方均有发送器和接收器,同时,需要2根数据线传送数据信号(可能还需要控制线和状态线,以及地线)。图2-5全双工2.1.3异步传输和同步传输串行传输中,数据是一位一位按照到达的顺序依次传输的,每位数据的发送和接收都需要时钟来控制。发送端通过发送时钟确定数据位的开始和结束,接收端需要在适当的时间间隔对数据流进行采样来正确的识别数据。接收端和发送端必须保持步调一致,否则数据传输就会出现差错。为了解决以上问题,串行传输可采用以下两种方法:异步传输和同步传输。1.异步传输通常,异步传输是以字符为传输单位,每个字符都要附加1位起始位和1位停止位,以标记一个字符的开始和结束,并以此实现数据传输同步。所谓异步传输是指字符与字符(一个字符结束到下一个字符开始)之间的时间间隔是可变的,并不需要严格地限制它们的时间关系。起始位对应于二进制值0,以低电平表示,占用1位宽度。停止位对应于二进制值1,以高电平表示,占用1~2位宽度。一个字符占用5~8位,具体取决于数据所采用的字符集。例如,电报码字符为5位、ASCII码字符为7位、汉字码则为8位。此外,还要附加1位奇偶校验位,可以选择奇校验或偶校验方式对该字符实施简单的差错控制。发送端与接收端除了采用相同的数据格式(字符的位数、停止位的位数、有无校验位及校验方式等)外,还应当采用相同的传输速率。典型的速率有:9600b/s、19.2kb/s、56kb/s等。异步传输又称为起止式异步通信方式,其优点是简单、可靠,适用于面向字符的、低速的异步通信场合。例如,计算机与Modem之间的通信就是采用这种方式。它的缺点是通信开销大,每传输一个字符都要额外附加2~3位,通信效率比较低。例如,在使用Modem上网时,普遍感觉速度很慢,除了传输速率低之外,与通信开销大、通信效率低也密切相关。
2.同步传输通常,同步传输是以数据块为传输单位。每个数据块的头部和尾部都要附加一个特殊的字符或比特序列,标记一个数据块的开始和结束,一般还要附加一个校验序列(如16位或32位CRC校验码),以便对数据块进行差错控制。所谓同步传输是指数据块与数据块之间的时间间隔是固定的,必须严格地规定它们的时间关系。和异步传输相比,数据传输单位的加长容易引起时钟漂移。为了保证接收端能够正确地区分数据流中的每个数据位,收发双主必须通过某种方法建立起同步的时钟。可以在发送器和接收器之间提供一条独立的时钟线路,由线路的一端(发送器或者接收器)定期地在每个比特时间中向线路发送一个短脉冲信号,另一端则将这些有规律的脉冲作为时钟。这种技术在短距离传输时表现良好,但在长距离传输中,定时脉冲可能会和信息信号一样受到破坏,从而出现定时误差。另一种方法是通过采用嵌有时钟信息的数据编码位向接收端提供同步信息。3USB通信原理简介3.1USB简介USB(UniversalSerialBus,通用串行总线)是以Intel为主,并有Compaq,Microsoft,IBM,DEC,NorthernTelecom以及日本NEC等共七家公司共同制定的串行接口标准,1994年11月制定了第一个草案,1996年2月公布了USB规范版本1.0。USB可把多达127个外设同时联到你的系统上,所有的外设通过协议来共享USB的带宽,其12Mbps的带宽对于键盘,鼠标等低中速外设是完全足够的(注:在1999年2月发布的USB规范版本2.0草案中,已建议将12Mbps的带宽提升到120-240Mbps。)。USB允许外设在主机和其它外设工作时进行连接、配置、使用及移除,即所谓的即插即用(Plug&Play)。同时USB总线的应用可以清除PC上过多的I/O端口,而以一个串行通道取代,使PC与外设之间的连接更容易。3.1.1USB设备USB设备包括Hub和功能设备,而功能设备又可以细分为定位设备字符设备等等。为了进一步叙述,我们给出端点(endpoint)和管道(pipe)的概念。端点:每一个USB设备在主机看来就是一个端点的集合,主机只能通过端点与设备进行通讯,以使用设备的功能。每个端点实际上就是一个一定大小的数据缓冲区,这些端点在设备出厂时就已定义好。在USB系统中,每一个端点都有唯一的地址,这是由设备地址和端点号给出的。每个端点都有一定的特性。其中包括:传输方式、总线访问、频率、带宽、端点号、数据包的最大容量等等。端点必须在设备配置后才能生效(端点0除外)。端点0通常为控制端点。用于设备初始化参数等。端点12等一般用作数据端点存放主机与设备间往来的数据。管道:一个USB管道是驱动程序的一个数据缓冲区与一个外设端点的连接,它代表了一种在两者之间移动数据的能力。一旦设备被配置,管道就存在了。管道有两种类型,数据流管道(其中的数据没有USB定义的结构)与消息管道(其中的数据必须有USB定义的结构)管道只是一个逻辑上的概念。所有的设备必须支持端点0以作为设备的控制管道。通过控制管道可以获取完全描述USB设备的信息,包括:设备类型、电源管理、配置、端点描述等等只要设备连接到USB上并且上电端点0就可以被访问与之对应的控制管道就存在了。一个USB设备可以分为三个层图(如图3-1所示)。最底层是总线接口,用来发送与接收包。中间层处理总线接口与不同的端点之间的数据流通。一个端点是数据最终的使用者或提供者,它可以看作数据的源或接收端。最上层就是USB设备所提供的功能,比如鼠标或键盘等。图3-1设备层次结构3.1.2USB的优点USB通信有如下几个优点:1.USB为所有的USB外设提供了单一的、易于使用的标准的连接类型。这样一来就简化了USB外设的设计,同时也简化了用户在判断哪个插头对应哪个插槽时的任务,实现了单一的数据通用接口。2.整个的USB的系统只有一个端口和一个中断,节省了系统资源。3.USB支持热插拔(hotplug)和PNP(Plug-and-Play),也就是说在不关闭PC的情况下可以安全的插上和断开USB设备,计算机系统动态地检测外设的插拔,并且动态地加载驱动程序。其他普通的外围连接标准,如SCSI设备等必须在关掉主机的情况下才能插拔外围设备。4.USB在设备供电方面提供了灵活性。USB直接连接到Hub或者是连接到Host的设备可以通过USB电缆供电,也可以通过电池或者其它的电力设备来供电,或使用两种供电方式的组合,并且支持节约能源的挂机和唤醒模式。5.USB提供全速12Mbps的速率和低速1.5Mbps的速率来适应各种不同类型的外设,USB2.0还支持480Mbps的高速传输速率。6.为了适应各种不同类型外围设备的要求,USB提供了四种不同的数据传输类型:控制传输Bulk数据、传输中断数据传输和同步数据传输。同步数据传输可为音频和视频等实时设备的实时数据传输提供固定带宽。7.USB的端口具有很灵活的扩展性,一个USB端口串接上一个USBHub就可以扩展为多个USB端口。3.1.3传输方式USB有四种的传输方式:控制(Control)、同步(isochronous)、中断(interrupt)、大量(bulk)。如果是从硬件开始来设计整个的系统那还要正确选择传输的方式,而作为一个驱动程序的书写者就只需要弄清楚其采用的什么工作方式就行了。通常所有的传输方式下的主动权都在PC边。1.控制(Control)方式传输:控制传输是双向传输,数据量通常较小。USB系统软件用来主要进行查询、配置和给USB设备发送通用的命令。控制传输方式可以包括8、16、32和64字节的数据,这依赖于设备和传输速度。控制传输典型地用在主计算机和USB外设之间的端点(Endpoint)0之间的传输,但是指定供应商的控制传输能用到其它的端点。2.同步(isochronous)方式:传输同步传输提供了确定的带宽和间隔时间latency)。它被用于时间严格并具有较强容错性的流数据传输,或者用于要求恒定的数据传输率的即时应用中。例如,执行即时通话的网络电话应用时,使用同步传输模式是很好的选择。同步数据要求确定的带宽值和确定的最大传输次数。对于同步传输来说,即时的数据传递比完美的精度和数据的完整性更重要一些。3.中断(interrupt)方式:传输中断方式传输主要用于定时查询设备是否有中断数据要传输,设备的端点模式器的结构决定了它的查询频率,从1到255ms之间,这种传输方式典型的应用在少量的分散的,不可预测数据的传输。键盘、操纵杆和鼠标就属于这一类型。中断方式传输是单向的并且对于host来说只有输入的方式。4.大量(bulk)传输:主要应用在数据大量传输和接受数据上,同时又没有带宽和间隔时间要求的情况下,要求保证传输。打印机和扫描仪属于这种类型。这种类型的设备适合于传输非常慢和大量被延迟的传输,可以等到所有其它类型的数据的传输完成之后再传输和接收数据。USB将其有效的带宽分成各个不同的帧(frame),每帧通常是1ms时间长。每个设备每帧只能传输一个同步的传输包。在完成了系统的配置信息和连接之后,USB的host就对不同的传输点和传输方式做一个统筹安排,用来适应整个的USB的带宽。通常情况下,同步方式和中断方式的传输会占据整个带宽的90%剩下的就安排给控制方式传输数据。3.2USB的总线协议3.2.1总线拓扑结构图3-2USB总线拓扑USB总线的物理连接是一种分层的菊花链结构,集线器(hub)是每个星形结构的中心。PC机就是主机和根Hub,用户可以将外设或附加的Hub与之相连。这些附加的Hub可以连接另外的外设以及下层HubUSB。支持最多5个Hub层以及127个外设。图3-2描述了USB的物理拓扑结构,从中可以看出每一段的连接都是点对点的。3.2.2USB的物理层USB的物理接口包括电气特性和机械特性。USB通过一个四线电缆来传输信号与电源,如图3-3所示。图3-3USB电缆定义其中,D+和D-是一对差模的信号线,而VBus和GND则提供了+5V的电源,它可以给一些设备(包括Hub)供电,但也要有一定的条件限制。USB提供了两种数据传输率:一种是12Mb的高速(fullspeed)模式,另一种是1.5Mb的低速模式。这两种模式可以同时存在于一个USB系统中。而引入低速模式,主要是为了降低要求不高的设备的成本,比如鼠标、键盘等等。USB信号线在高速模式下必须使用带有屏蔽的双绞线,而且最长不能超过5m;而在低速模式时中可以使用不带屏蔽或不是双绞的线,但最长不能超过3m。这主要是由于信号衰减的限制。为了提供信号电压保证,以及与终端负载相匹配,在电缆的每一端都使用了不平衡的终端负载。这种终端负载也保证了能够检测外设与端口的连接或分离,并且可以区分高速与低速设备。所有的设备都有上行的接口。上行和下行的接头是不能互换的,这保证了不会有非法的连接出现。插头与插座有A和B两个系列,系列A用于基本固定的外围设备,而系列B用于经常拔插的设备,这两个系列是不能互换的。3.2.3USB总线协议所有总线操作都可以归结为三种包的传输。任何操作都是从主机开始的,主机以预先排好的时序,发出一个描述操作类型、方向、外设地址以及端点号的包,我们称之为令牌包(TokenPacket)。然后在令牌中指定的数据发送者发出一个数据包或者指出它没有数据可以传输。而数据的目的地一般要以一个确认包(HandshakePacket)来作出响应以表明传输是否成功。1.域的类型同步域(SYNCfield):所有的包都起始于SYNC域,它被用于本地时钟与输入信号的同步,并且在长度上定义为8位。SYNC的最后两位作为一个记号表明PID域(标识域)的开始。。标识域(PacketIdentifierField):对于每个包,PID都是紧跟着SYNC的,PID指明了包的类型及其格式。主机和所有的外设都必须对接收到的PID域进行解码。如果出现错误或者解码为未定义的值,那么这个包就会被接收者忽略。如果外设接收到一个PID,它所指明的操作类型或者方向不被支持,外设将不作响应。地址域(AddressField):外设端点都是由地址域指明的,它包括两个子域:外设地址和外设端点。外设必须解读这两个域,其中若有任何一个不匹配,这个令牌就会被忽略。外设地址域(ADDR)指定了外设,它根据PID所说明的令牌的类型,指明了外设是数据包的发送者或接收者。ADDR共6位,因此最多可以有127个地址。一旦外设被复位或上电,外设的地址被缺省为0,这时必须在主机枚举过程中被赋予一个独一的地址。而0地址只能用于缺省值而不能分配作一般的地址。端点域(ENDP)有4位,它使设备可以拥有几个子通道。所有的设备必须支持一个控制端点0(endpoint0)。低速的设备最多支持2个端点:0和一个附加端点。高速设备可以支持最多16个端点。帧号域(FrameNumberField):这是一个11位的域,指明了目前帧的排号,每过一帧(1ms)这个域的值加1,到达最大值XFF后返回0。这个域只存在于每帧开始时的SOF令牌中。数据域(DataField):范围是0~1023字节,而且必须是整数个字节。CRC校验:包括令牌校验和数据校验。2.包的类型令牌包(TokenPacked):其中包括:IN(输入)、OUT(输出)、SETUP(设置)和SOF(StartofFrame,帧起始)四种类型。其中IN、OUT、SETUP的格式如图3-4所示。图3-4IN、OUT、SETUP数据格式对于OUT和SETUP来说,ADDR和ENDP中所指明的端点将接收到主机发出的数据包,而对IN来说,所指定的端点将输出一个数据包。Token和SOF在三个字节的时间内以一个EOP(EndofPacket)结束。如果一个包被解码为Token包但是并没有在3个字节时间内以EOP结束,就会被看作非法包或该包被忽略。对于SOF包,它的格式如图3-5所示。主机以一定的速率(1ms±0.05一次)发送SOF包,SOF不引起任何操作。图3-5SOF数据格式数据包:包括Data0和Data1两种类型。这两种包的定义是为了支持数据触发同步。数据包包含了PID、DATA和CRC三个域,如图3-6所示。图3-6DATA数据格式应答包(HandshakePacket):仅包含一个如图3-7所示的PID域。Handshake用来报告数据传输的状态。只有支持流控制的传输类型(控制中断和批传输)才能返回Handshake。图3-7PID数据格式Handshake包有三种类型:(1)确认包ACK:表明数据接收成功。(2)无效包NAK:指出设备暂时不能传送或接收数据,但无需主机介入,可以解释成设备忙。(3)出错包STALL:指出设备不能传送或接收数据,但需要主机介入才能恢复,NAK和STALL不能由主机发出。特殊包(Special):PID名称为PRE(preamble),用于低速操作的情形。3.总线操作的格式图3-8批操作流程批操作(bulktransaction):批操作包括令牌、数据、应答三个阶段,如图3-8所示。对于输入操作,如果设备不能返回数据,那么必须发出NAK或STALL包;对于输出如果设备不能接收数据,也要返回NAK或STALL。图3-9描述了批操作的读写过程以及序列位(sequencebit)和数据包PID的使用。图3-9批操作读写过程控制操作(controltransaction):主要包括两个操作阶段(transactionstage):设置和状态。图3-10给出了设置操作的细节,如果数据没有正确接收,那么设备就会忽略它,而且不返回应答包。图3-10控制操作流程控制操作的详细描述如图3-11所示,其中我们要注意数据包PID的使用。图3-11控制操作读写过程中断操作(interrupttransaction):中断操作只有输入这一个方向,具体格式与批操作的输入情形如图3-12所示。图3-12中断操作流程同步操作(isochronoustransaction):同步操作不同于其他类型,如图3-13所示,其只包含两个阶段:令牌和数据。因为同步传输不支持重发的能力,所以没有应答阶段。另外它也不支持数据的触发同步与重试。图3-13同步操作流程4.数据触发同步与重试USB提供了保证数据序列同步的机制,这一机制确保了数据传输的准确性。这一同步过程是通过Data0和Data1的PID以及发送者与接收者上的数据触发序列位(datatogglesequencebit)来实现的。接收者的序列位只有当接收到一个正确的数据包时(包括正确的PID)才能被触发。而发送者的序列位只有当接收到确认包ACK时才能被触发。在总线传输的开始,发送者与接收者的序列位必须一致,这是由控制命令来实现的。同步传输方式不支持数据触发同步。图3-14、图3-15、图3-16说明了数据触发同步的基本原理。图3-14数据触发与同步一图3-15数据触发与同步二图3-16数据触发与同步三每次总线操作,接收者将发送者的序列位(被译码成数据包PID的一位,即Data0或Data1)与本身的相比较。如果数据不能接收,则必须发送NAK。如果数据可以被接收,并且两者的序列位匹配,则该数据被接收并且发送ACK,同时接收者的序列位被触发。如果数据可以被接收,但两者的序列位不匹配,则接收者只发出ACK而不进行其它操作。对于发送者来说,在接收到NAK时或在规定时间内没有接收到ACK,则将上一次的数据重发。5.低速操作Hub具有禁止高速信号进入低速设备的能力,这既防止了电磁干扰的发生,又保护了低速设备。图3-17是一次低速的输入操作,主机发送令牌与应答包并且接收了一个数据包。图3-17低速方式的输入操作所有下行的低速传输的包,必须先发送一个PRE包。Hub必须解释PRE包,而所有其它的USB设备必须忽略这个包。主机在发送完PRE包后,必须等待至少4位的时间,而在这个期间,Hub完成必要的设置,使之能接收低速的信号。在接收到EOP信号之后,Hub关闭低速设备的端口。上行的操作则没有上述的行为,低速与高速是一样的。低速操作还有其它的限制:(1)数据包最大限制为8个字节。(2)只支持中断和控制传输方式。6.错误检验与恢复USB具有检查错误的能力,并且可以根据传输类型的要求进行相应的处理。例如,控制传输的需要很高的数据准确度,因此支持所有错误检验与重试来实现端对端的数据完整传输。而同步传输不允许重试,因此必须具有一定的容错性。USB这种检查错误的能力包括:PID检验、CRC检验、总线时间溢出以及EOP错误检验等等。4PC与单片机通过USB的通信设计4.1设计方案选择由于实际应用中单片机在数据处理能力、人机交互等方面往往不能满足要求,因而通常用PC来弥补单片机的这些不足。例如,在工程应用中,常常由一台PC机和一台单片机构成主从式计算机测控系统。在这样的系统中,以单片机为核心的智能测控仪表(从机)作为现场测控设备,完成数据的采集、处理和控制各种任务,同时将数据传给PC机(主机),PC机将这些数据加工处理后,进行显示、打印报表等。PC机也可以将各种控制命令传送给单片机,干预单片机系统的运行,从而发挥PC机的优势。要实现这样的功能,就涉及到PC机与单片机之间的通信问题。现在的计算机提供了各种各样的串口,他们支持不同的通信协议,有着不同的功能。目前计算机提供的串口有RS-232,RJ45,USB2.0等。4.1.1PC机同单片机通信存在的问题目前,51单片机同PC机的通信在大多数情况下仍然是使用RS-232(DB-9)串口作为通信接口实现的。而随着USB接口技术的成熟和使用的普及,由于USB接口有着一系列RS-232(DB-9)串口无法比拟的优点,RS-232(DB-9)串口正在逐步的为USB接口所替代。而在现在的大多数笔记本电脑中,出于节省物理空间和用处不大等原因,RS-232(DB-9)串口已不再设置,这就约束了基于RS-232(DB-9)串口与PC机联络的单片机设备的使用范围。4.1.2USB接口同RS-232(DB-9)串口的比较通过USB接口和RS-232(DB-9)的比较,不难发现:(1)USB接口支持即插即用和热插拔,而RS-232(DB-9)串口不支持即插即用和热插拔,设备安装后需重启计算机方可使用。(2)USB接口的传输速率较快,可达480Mbps(V2.0),而RS-232(DB-9)串口的最高速率仅为19200波特。(3)USB接口占用体积较小,插拔方便;而RS-232(DB-9)串口的的插拔需要使用改锥,且在机箱后操作,比较麻烦。综上可知,USB接口取代RS-232(DB-9)串口的趋势不可逆转。另外在本设计中选择使用的单片机是AT8C951。AT89C51是一种低功耗、高性能的8位单片微型计算机,它采用了CMOS工艺和ATMEL公司的高密度NVRAM(非易失性随机存储器)技术,片内带有一个4KB的FLASHFPROM(可擦除、可编程只读存储器),作为INTEL8051的换代产品,其输出引脚和指令系统与MCS-51完全兼容。由于AT89C51单片机具有集成度高、面向控制、系统结构简单、价格便宜等诸多优点,因而在智能化仪器仪表、数据采集、数据测量等方面有着广泛的应用。4.1.3USB转接芯片的选择目前常用的USB转接芯片包括PL2303,CH341,CP2101,FT232等。在综合考虑了各方面因素后,CH341成为了本次电路设计的首选芯片。CH341是南京沁恒电子公司生产的USB总线的转接芯片,通过USB总线提供异步串口,打印口,并口及常用的2线和4线等同步串行端口。其特点有:(1)提供全速USB设备借口,兼容USB2.0,外围设备只需要晶体和电容;(2)可通过外部的低成本串行EPROM定义厂商ID,产品ID,序列号等;(3)成本低廉,可直接转换原串口外围设备;(4)采用SOP-28封装,串口应用还提供小型的SSOP-20封装。正是由于在PC机同单片机通信电路中,USB转接芯片CH341具有以上其他芯片无法比拟的优点,同时价格低廉并且提供中文技术支持,因此它成为了本电路USB转接芯片的最优选择。本电路采用的是SSOP-20封装的CH341T,其引脚图如图4-1所示。图4-1CH341T引脚图4.2单片机最小系统4.2.1单片机原理简介单片机(single-chipmicrocomputer)是把微型计算机主要部分都集成在一块芯片上的单芯片微型计算机[12]。图3-1中表示单片机的典型结构图。由于单片机的高度集成化,缩短了系统内的信号传送距离,优化了结构配置,大大地提高了系统的可靠性及运行速度,同时它的指令系统又很适合于工业控制的要求,所以单片机在工业过程及设备控制中得到了广泛的应用[13,14]。图3-1典型单片机结构图4.2.2单片机的应用系统单片机在进行实时控制和实时数据处理时,需要与外界交换信息。人们需要通过人机对话,了解系统的工作情况和进行控制。单片机芯片与其它CPU比较,功能虽然要强得多,但由于芯片结构、引脚数目的限制,片内ROM、RAM、I/O口等不能很多,在构成实际的应用系统时需要加以扩展,以适应不同的工作情况。单片机应用系统的构成基本上如图3-2所示。图3-2单片机的应用系统单片机应用系统根据系统扩展和系统配置的状况,可以分为最小应用系统、最小功耗系统、典型应用系统。本设计是设计一款最小应用系统,最小应用系统是指能维持单片机运行的最简单配置的系统。这种系统成本低廉、结构简单,常用来构成简单的控制系统,如开关量的输入/输出控制、时序控制等。对于片内有ROM/EPROM的芯片来说,最小应用系统即为配有晶体振荡器、复位电路和电源的单个芯片;对与片内没有ROM/EPROM芯片来说,其最小应用系统除了应配置上述的晶振、复位电路和电源外,还应配备EPROM或EEPROM作为程序存储器使用[15,16]。4.2.3AT89C52简介AT89C52的主要参数如表3-1所示:表3-1AT89C52的主要参数型号存储器定时器I/0串行口中断速度(MH)其它特点E²PROMROMRAM89C528K1282321624低电压AT89C52含E²PROM电可编闪速存储器。有两级或三级程序存储器保密系统,防止E²PROM中的程序被非法复制。不用紫外线擦除,提高了编程效率。程序存储器E²PROM容量可达20K字节。AT89C52是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—FalshProgrammableandErasableReadOnlyMemory)的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C52是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。其引脚如图2-3所示[17,18]。图3-3单片机的引脚排列1.主要特性:·与MCS-51兼容
·8K字节可编程闪烁存储器
寿命:1000写/擦循环·全静态工作:0Hz-24Hz
·三级程序存储器锁定
·128*8位内部RAM
·32可编程I/O线
·两个16位定时器/计数器
·5个中断源
·可编程串行通道
·低功耗的闲置和掉电模式
·片内振荡器和时钟电路2、管脚说明:
VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口,如下所示:
P3口管脚备选功能
P3.0RXD(串行输入口)P3.1TXD(串行输出口)
P3.2/INT0(外部中断0)
P3.3/INT1(外部中断1)
P3.4T0(记时器0外部输入)
P3.5T1(记时器1外部输入)
P3.6/WR(外部数据存储器写选通)
P3.7/RD(外部数据存储器读选通)
P3口同时为闪烁编程和编程校验接收一些控制信号。
RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。
/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。
/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。存储器结构:MCS-51单片机内核采用程序存储器和数据存储器空间分开的结构,均具64KB外部程序和数据的寻址空间。程序存储器:如果EA引脚接地(GND),全部程序均执行外部存储器。在AT89S51,假如EA接至Vcc(电源+),程序首先执行地址从0000H-0FFFH(4KB)内部程序存储器,再执行地址为1000H-FFFFH(60KB)的外部程序存储器。数据存储器:AT89S51的具128字节的内部RAM,这128字节可利用直接或间接寻址方式访问,堆栈操作可利用间接寻址方式进行,128字节均可设置为堆栈区空间。3、I/O口引脚:a:P0口,双向8位三态I/O口,此口为地址总线(低8位)及数据总线分时复用;b:P1口,8位准双向I/O口;c:P2口,8位准双向I/O口,与地址总线(高8位)复用;d:P3口,8位准双向I/O口,双功能复用口。4、振荡器特性:
AT89S52一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器。外接石英晶体(或陶瓷谐振器)及电容Cl、C2接在放大器的反馈回路构成并联振荡电路。对外接电容Cl、C2虽然没十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳定性。如果使用石英晶体,我们推荐电容使用30pF±10pF,而如使用陶瓷谐振器建议选择40pF±10pF。用户也可以采用外部时钟。这种情况下,外部时钟脉冲接到XTAL1端,即内部时钟发生器的输入端,XTAL2则悬空。由于外部时钟信号是通过一个2分频触发器后作为内部时钟信号的,所以对外部时钟信号的占空比没有特殊要求,但最小高电平持续时间和最大的低电平持续时间应符合产品技术条件的要求。XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。5、芯片擦除:整个EPROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。此外,AT89C52设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM,定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。6、Flash闪速存储器的并行编程AT89C52单片机内部8k字节的可快速编程的Flash存储阵列。编程方法可通过传统的EPROM编程器使用高电压(+12V)和协调的控制信号进行编程。AT89C52的代码是逐一字节进行编程的。编程方法:编程前,须设置好地址、数据及控制信号,AT89C51编程方法如下:1.在地址线上加上要编程单元的地址信号。2.在数据线上加上要写入的数据字节。3.激活相应的控制信号。4.将EA/Vpp端加上+12V编程电压。5.每对Flash存储阵列写入一个字节或每写入一个程序加密位,加上一个ALE/PROG编程脉冲。每个字节写入周期是自身定时的,大多数约为50us。改变编程单元的地址和写入的数据,重复1-5步骤,直到全部文件编程结束。4.2.4单片机最小系统设计采用AT89C52单片机构成了控制系统的核心,其基本模块就主要包括复位电路和晶体震荡电路。在本设计当中,单片机的P0口、P1口、P2口、P3口全部参与系统工作,单片机最小系统的接线如图3.4所示:图3.4单片机最小系统图4.3硬件设计4.3.1硬件电路设计CH341T提供全速USB设备接口,兼容USB2.0,外围器件只需要电容和晶体,电路如附录A所示。其中,电源电压为5V,USB接口的差分数据线对与CH341T的UD-和UD+直接相连。CH341T提供TTL电平,同AT89C51直接采用简单的3线连接(RXD—TXD;TXD—RXD;GND—GND)。在5V电源的情况下,V3口需要外接0.01uF的退耦电容。TEN#为串口发送数据使能端,低电平有效。CH341T必须使用12Mhz晶振,否则无法正常工作。为保证单片机能够产生与计算机匹配的波特率,单片机采用11.0592Mhz的晶振。4.3.2硬件驱动程序安装在网站/download/index.htm可下载CH341T驱动程序CH341SER.EXE,在确认驱动程序和硬件电路无误后,打开驱动程序。弹出安装对话框后选择INSTALL,设备将自动安装驱动程序。安装完成后计算机将提示安装成功。将硬件电路通过USB接口连接至计算机,计算机自动识别并弹出新硬件安装对话框,选择自动安装,驱动程序即可成功安装至计算机。在计算机设备管理器中,可显示刚刚安装成功的USB串口。如图4-3所示。图4-3安装完成后的设备管理器4.4通信程序设计4.4.1PC机与USB通信程序设计图4-4为计算机与USB通信处理流程图。开始开始USB设置是否为TRUE?检查设备是否配置调用I2cWriteRead();发送数据接收数据结束处理USBSetup包图4-4计算机与USB通信处理流程图部分关键代码如下:voidmain(void){init_port(); /*初始化I/O口*/init_timer0(); /*设置定时器0*/init_special_interrupts(); /*设置中断*///D12_DATA=0xfb02; /*定义数据地址*///D12_COMMAND=0xfb03; /*定义命令地址*/D12_DATA=0x7002; /*定义数据地址*/D12_COMMAND=0x7003; /*定义命令地址*/D12_SetDMA(0x0); /*不使用DMA功能*/bEPPflags.value=0; /*初始化USB寄存器*//*上电复位,USB总线重新连接指令*/reconnect_USB();while(TRUE){if(bEPPflags.bits.configuration){I2cWriteRead();/*如果设备已配置,调用I2cWriteRead()*/ }outportb(port,a);/*发送数据usbserve();/*处理USB的setup包*/for(j=0;j<9;j++)/*接收数据*/{while(!(inportb(port+5)&1));ch[j]=inportb(port);}for(j=0;j<9;j++)printf("n%d\n",ch[j]);getch();break;}4.4.2单片机通信程序设计为实现单片机同PC机的简单通信功能,需要通过汇编指令使单片机完成一定的工作来验证USB接口通信的畅通。若要使单片机串口能够同PC机正常通信,单片机和USB接口需要使用相同的通信协议,在设备管理器中,可设置串口破特率为9600。而在单片机中,通过软件设置串口波特率为9600,工作方式为方式一,每接收一个8位数据,将数据保存并回送至计算机,以此来实现对USB通信畅通与否的测试。程序流程图如图4-6所示。开始开始设定定时器和USB工作方式开中断等待中断中断产生接收数据关中断回送数据开发送中断等待数据接收完成返回初始状态图4-6单片机的程序流程图根据程序流程图,单片机的指令代码如下:ORGDDOOHSTART:MOVTMOD,#20H;定时器T1为方式2MOVTL1,#DFDH;波特率为9600SETBTR1MOVSCON,#50H;串口工作方式1,REN=1SETBESSETBEA;开中断SJMP$;等待中断ORG0023H;中断入口地址JNBBI,SBR;RI为1时跳至发送,为0时说明发送已完成AJMPSTART;返回初始状态,等待下一次数据接收,实现数据的循环接收SBR:AJMPSBR1ORG0100HSBR1:CLRRIMOVA,ABUF;接收数据MOVB1,AMOVSBUF,A;数据回送JNBT1,$CLRT14.5USB通信模块调试USB通信模块的调试使用串口调试工具(ComTools),该工具是一款功能强大的串口调试免费软件。其主要功能如下:(1)支持COM1—COM8串口的数据发送和接收,可重复发送和接收数据;(2)支持HEX格式数据和ASC格式数据的串口发送和接收;(3)可自定义数据格式,校验位,可自定义数据传输速率;(4)可自动记录发送和接收的数据并保存。使用串口调试工具可以方便的通过计算机向USB串口通信模块发送数据并记录所接收的数据。因此,本次USB通信模块的调试使用该串口调试工具完成PC机同单片机的通信。打开串口调试工具。首先选择串口设置,设置串口为设备管理器中对应的串口(COM1),设置波特率为9600
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级历史下册单元评价检测课件
- 《证劵基础知识最终》课件
- 《激光切割工艺》课件
- 荒山绿化项目可行性研究报告
- 《人力资源管理奥秘》课件
- 股份解禁协议三篇
- 专业毕业实习报告4篇
- 2023年-2024年企业主要负责人安全教育培训试题及答案(易错题)
- 2024员工三级安全培训考试题带解析答案可打印
- 2023年-2024年项目部安全管理人员安全培训考试题附答案【培优A卷】
- 无人机表演服务合同
- 呼吸内科临床诊疗指南及操作规范
- 物业经理转正述职
- 贸易岗位招聘面试题及回答建议(某大型国企)2025年
- 世界职业院校技能大赛高职组“关务实务组”赛项参考试题及答案
- 高中历史教师资格考试面试试题及解答参考(2024年)
- 北师大版(2024新版)生物七年级上册期末考点复习提纲
- 2024年理论中心组学习心得体会模版(2篇)
- 浙江省杭州市2023-2024学年六年级上学期语文期末试卷(含答案)
- 环保行业工业废气污染防治技术路线方案
- 电工的职业健康培训
评论
0/150
提交评论