




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Section3.4-3.6PropertiesofFunctionsOverviewMonotonicityofFunctionsLocalExtremeValuesofFunctionsGlobalMaximaandMinimaConvexityofFunctionsInflectionsGraphingFunctions23MonotonicityofFunctions(1)Thenecessaryandsufficientconditionforthefunctionftobemonotoneincreasing(decreasing)onIis(2)If()inI
,thenf
isstrictlymonotoneincreasing,anddifferentiableinI.
becontinuousonITheorem
LetThen(decreasing)onI.()inI;MonotonicityofFunctions4Proof(1)SufficiencyForanyiscontinuousonandisdifferentiableinBytheLagrangetheoremandtheconditionwehavewhereHence,thefunctionftobemonotoneincreasing(decreasing)onI.theintervalMonotonicityofFunctions5Proof(continued)(1)NecessitySupposethatfismonotoneincreasing(decreasing)on
I.ForanyxbelongingtotheinteriorI,thenSo,takingsuchthat6MonotonicityofFunctionsSincetherootsoftheequation
areIteasytoseethat
if
and;Example
Discussthemonotonicityofthefunction.Solution,
and.
if.7MonotonicityofFunctionsThen,wehavethefunction
isstrictlymonotoneincreasingintheintervalFinish.Solution(continued)
and;andisstrictlymonotonedecreasingintheinterval.Example
Discussthemonotonicityofthefunction.8MonotonicityofFunctionsExample
ProvethatProofInordertoobtainthegiveninequatity,weneedonlyprovethatLetthenButthesignofisstillnotclearon[0,1).LetusrepeattheproceduretoconsiderthederivativeoffunctionItiseasytoobtainMonotonicityofFunctions9Proof(continued)ByTheorem2.7.1,isstrictlymonotonedecreasingon[0,1).ThusAgainfromTheorem2.7.1,weknowthatorThisisthedesiredconclusion.Finish.Example
Provethat10ExtremeValuesofFunctionsDefinition
SupposethatIfthereisa
suchthat
(),thenwesaythatthefunctionfhasamaximum(minimum)
atMaximumandminimumvaluesaregivenajointname
extremevalue[极值],
iscalledamaximal(minimal)andthepointpoint
or
extremepoint[极值点].11ExtremeValuesofFunctions(1)Iffor
and
for,thenf
hasamaximum
(2)If
for
and
for,thenf
hasaminimum
thenthepoint
isnotanextremepoint.TheoremLetthefunctionfbedifferentiableinaneighborhoodofapoint
,and
atthepoint;(3)If
hasthesamesignonboththeleftandrightsidesofthepoint,
atthepoint;12ExtremeValuesofFunctions13ExtremeValuesofFunctionsExample
FindtheextremevaluesofthefunctionWeneedthreestepstodiscussthisproblem.,itisobviousthatthestationarypointis
and.SinceSolution(1)Findthestationarypointsandpointswherethefunctionisnotdifferentiable.non-differentiabilityareandthepointsof,(2)Inordertodeterminethesignof
intheneighborhoodsofthesepoints,wepartitiontheintervalofdefinitionofthegivenfunctionpointsandmakeatableasfollowing
bythose0460MinimalPointMaximalPointNon-extremePoint14Solution(continued)0460MinimalPointMaximalPointNon-extremePointFinish.Fromthetablewemayseethatthemaximumofthefunctionis(3)Determinetheextremevalues.,andtheminimumis.ExtremeValuesofFunctionsExample
Findtheextremevaluesofthefunction15ExtremeValuesofFunctionsExample
Findtheextremevaluesofthefunction16ExtremeValuesofFunctionsTheorem
hasasecondderivativeatapointand,Thenthefunction
hasamaximum(minimum)
if().Supposethatthefunction,.
atthepoint
Sincefhasasecondderivativeatpoint,intheneighborhood
theTaylorformulaofthefunctionfwiththesecondorderandPeanoremainderwhereSince,wehave.Proofisthefollowing17ExtremeValuesofFunctionsWecanseefromthisthatthesignof,thefirsttermofthelastexpression.,or,thenTheminimumpropertymaybeprovedsimilarly.Proof(continued)
isdeterminedbyHence,when,
isamaximumofthefunction.Finish.,Theorem
hasasecondderivativeatapointand,Thenthefunction
hasamaximum(minimum)
if().Supposethatthefunction,.
atthepoint
ExtremeValuesofFunctions18weneedonlyconsider
inaperiodicinterval.Bythelasttheorem,wemayfindtheextremeLet(2)FindthesecondderivativeofandconsideritssignattheseExample
FindtheextremevalueofthefunctionSolutionSince
isaperiodicfunction,,(1)Findthestationarypointsofthevaluebythefollowingsteps:..Wehavethestationarypoints.stationarypoints(3)Findthemaximumandminimumof.19ExtremeValuesofFunctionsThenthemaximumofthefunction
intheinterval
is;andtheminimumis.
Solution(continued)Finish.Example
Findtheextremevalueofthefunction20NoteIfwehave
atastationarypointTheorem
Supposethatthefunction
is-timesdifferentiableandThen
mustbeanextremepoint,andisamaximumof
if
andaminimumif(2)when
isodd,
isnotanextremepoint.ExtremeValuesofFunctions,thenwehavetoutilizethehigherderivativesofthefunction.
iseven,(1)when21Ifafunction
iscontinuousonaclosedintervalpropertiesofcontinuousfunctions,
musthaveaglobalmaximumitmustbealocalmaximumvalueoralocalminimumvalue;ifwewanttofindtheglobalmaximumvalueorglobalminimumvalue,
and.,thenbytheandaglobalminimumon.Andifanyofthem,say,isin,possibilityisthat
maybeoneoftheendpointsof.Therefore,weneedtofindallstationarypoints,compareallthefunctionvaluesatthesepointsandvalues(1)(2)(3)Globalmaximaandminimaanothernon-differentiablepointsandthen22GlobalmaximaandminimaAswehadseeninlastlecture,bythedefinitionofmaximumandminimalvalueofafunction,theyareonlylocalvalues.Butformanyproblems,weneedtofindthelargestvalueorsmallestvalueinthefixedinterval,andthesevalueisreferredasglobalmaximumandglobalminimum.Ifafunction
iscontinuousonaclosedintervalpropertiesofcontinuousfunctions,
musthaveaglobalmaximum.Andifanyofthem,sayitmustbealocalmaximumvalueoralocalminimumvalue;anotherifwewanttofindtheglobalmaximumvalueorglobalminimumvalue,
and.,thenbytheandaglobalminimumon,isin,possibilityisthat
maybeoneoftheendpointsof.Therefore,weneedtofindallstationarypoints,non-differentiablepointsandthencompareallthefunctionvaluesatthesepointsandvalues(1)(2)(3)Globalmaximaandminima23Note
Itisworthwhiletoindicatethatforsomespecialcases,findingglobalmaximaorminimamaybesimplified.Forinstance,iff(x)ismonotoneincreasing(decreasing)ontheinterval[a,b],thentheglobalmaximumandminimummustbeattainedattheendpointsb(ora)ora(orb,respectively;if
f(x)iscontinuouson[a,b]andhasonlyoneextremepointthenx0mustbetheglobalmaximum(minimum)pointprovideditisalocalmaximum(minimum)point.Globalmaximaandminima24Note
Tosolveapracticalproblem,wemayshouldestablishtheobjectivefunctionfirstlyandthenfindtheglobalmaximumorminimumbyfindingallthestationarypoints,non-differentiablepointsandcomparingthefunctionvaluesandthefunctionvaluesattheendofthegiveninterval.Globalmaximaandminima25
(1)Establishtheobjectivefunction.SolutionTheleastamountofmaterialmeansthesmallestsurfacearea.SupposethatthesurfaceareaofthecontainerisS,theheightisH,andtheradiusofthebottomisR.ThenBythelastequation,wehave,andthentheobjectivefunctionisExample
AcylindricalcontainerwithvolumeV0andwithoutcoveristobemadeofasheetofiron.Howshouldwedesignitifwewishtousetheleastamountofmaterial?Globalmaximaandminima26Solution(continued)(2)Findtheglobalminimum.Let;weobtainthestationarypointSincethenweknowthatitistheglobalminimumpoint.Wehave..
istheminimum.Sincethispointisuniquein,Example
AcylindricalcontainerwithvolumeV0andwithoutcoveristobemadeofasheetofiron.Howshouldwedesignitifwewishtousetheleastamountofmaterial?27GlobalmaximaandminimaSolution(continued)While,wehaveTherefore,theamountofmaterialisminimizedprovidedtheheightHand.Finish.theradiusofthebottomRareequal.Example
AcylindricalcontainerwithvolumeV0andwithoutcoveristobemadeofasheetofiron.Howshouldwedesignitifwewishtousetheleastamountofmaterial?28Globalmaximaandminima
Itiseasytoseethattheclosestpointfromustotheenemyisthebestpositionforustoshoottheenemy.Example
Supposethattheenemy’scargostraighttothenorthfrompointAwiththevelocityof1km/minandthewidthoftheriveris0.5
kilometres.AtankofourarmygoalongtheriversideanddirecttotheeastfrompointBwiththevelocityof2km/min.(Seetherightfigure)Thequestioniswhereisthebestpositiontoshootenemy?29Globalmaximaandminima(1)Findtherelationbetweenthepositionofourtankandtheenemy’scar.SolutionSupposethattisthetimewhenourtankbegintochasetheenemyfromBandthedistancebetweentheenemyandusThen(2)Findtheglobalminimalvalueof.
.Let,wefindthestationarypointItiseasytoseethatthispointisthepointofminimumvalue.afterwebegantochasetheenemy,isthebesttimeweshoottheenemy.Finish..
isTherefore,1.5minuets,30ConvexityoffunctionsConcaveFunctionConvexFunctionofbeingconvexuporconvexdownforthegraphofafunctioniscalledtheconvexityConvexityisanotherimportantpropertyoffunctions.Ingenerally,afunction,whosethegraphisconvexdown,iscalledaconcavefunction,whileafunctionwhosegraphisconvexup,iscalledconvexfunction.Thepropertyofthefunction.31Convexityoffunctions32ConvexityoffunctionsAndthen,wehavethefollowingdefinition.Definition(convexfunction)If
and
theinequalityholds,thenif,
and,wehavethenIftheinequalityofthesetwo
iscalledconvexfunctionorstrictlyconvexfunction,respectively.Let.
iscalledaconcavefunctionon;,
fiscalledastrictlyconcavefunctionon.inequalityisreversed,thenonItisnotveryeasytojudgetheconvexityofagivenfunctiondirectlyfromthedefinition.33ConvexityoffunctionsThisconclusionareeasilyunderstoodgeometrically.34ConvexityoffunctionsWeproveonlythecaseofstrictconvexity;theotherproofsaresimilar.,Itiseasytoprovethat,,
wehavetheinequalitySupposethat;notethat.ItisenoughtoproveAddingtwotermsandthenusingthemeanvaluetheoremwehaveProofSupposethat..Convexityoffunctions35Proof(continued)?where,whileSubstitutingtheseintotheaboveequalityandusingthemeanvaluetheorem,,Convexityoffunctions36Proof(continued)whereFinish..Theconclusionisproved.37Convexityoffunctions(1)(2)Example
Studytheconvexityofthefollowingfunctions(1)Sincesothepowerfunction(2)SincesothelogarithmfunctionFinish.Solution
isstrictlyconvexintheinterval.,,
isstrictlyconcavein.Convexityoffunctions38Theorem
If
iscontinuousandstrictlyconvexinanintervalI,thenthenitmustbetheglobalminimumpointsinI.hasatmostoneglobalminimumpoint,andifthereexistsauniquelocalminimumpointinI
and,sothatBythestrictconvexityof
wehaveBecause,acontradictionappears.ProofSupposethatthereexisttwominimumpoints..Convexityoffunctions39Proof(continued)Secondly,letitistheglobalminimumpointin.Supposethatthereexists,
suchthat.Bythedefinitionofconvexfunctionwehave
bealocalminimumpoint;,wewillprovethat.Theorem
If
iscontinuousandstrictlyconvexinanintervalI,thenthenitmustbetheglobalminimumpointsinI.hasatmostoneglobalminimumpoint,andifthereexistsauniquelocalminimumpointinI40Convexityoffunctions
isarbitraryon,and
canbetakenarbitrarilyclosetoInthiscase,
contradictsassumptionthat
isalocalNotethat
iscontinuousin
andProof(continued)
bytaking
closeenoughto1.Finish.minimum.So,mustbetheglobalminimumpointsinI.Theorem
If
iscontinuousandstrictlyconvexinanintervalI,thenthenitmustbetheglobalminimumpointsinI.hasatmostoneglobalminimumpoint,andifthereexistsauniquelocalminimumpointinI41ConvexityoffunctionsInflectionpointsWeknowthatthegraphofaconvexfunctionisconvexdown,andthe
graphofaconcavefunctionisconvexup.Concerningthetransitionpointonthecurvebetweenconvexdownandconvexup.42ConvexityoffunctionsAssumethat;ifthereexists
suchthatthecurve
isconvexdown(up)intheinterval
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 伊利牛奶客户关系管理资源
- 2025年标准采购合同范本下载
- 智能制造技术应用推广
- 2025汽车按揭贷款合同书范本(合同示范文本)
- 2025企业设备借款合同参考
- 冬季公交行车安全教育
- 数字信号处理算法及应用测试卷
- 渔业行业智能化养殖与渔业资源管理方案
- 大数据在农业智能化种植中的应用与发展趋势分析
- 土壤修复行业发展趋势与未来市场展望分析
- 校园法制宣传课件
- 2025中国信创服务器厂商研究报告-亿欧智库
- 2025年辽宁省盘锦市事业单位公开招聘高校毕业生历年高频重点模拟试卷提升(共500题附带答案详解)
- 2025年浙江杭州建德市林业总场下属林场招聘8人高频重点模拟试卷提升(共500题附带答案详解)
- 流行性感冒诊疗方案(2025年版)权威解读
- 《水库大坝安全监测管理办法》知识培训
- 裂隙等密度(玫瑰花图)-简版
- 2025年河南工业职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年宁波职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2024版射箭馆会员训练协议3篇
- 《新能源汽车滚装运输安全技术指南》2022
评论
0/150
提交评论