《高数双语》课件section 3-4_第1页
《高数双语》课件section 3-4_第2页
《高数双语》课件section 3-4_第3页
《高数双语》课件section 3-4_第4页
《高数双语》课件section 3-4_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Section3.4-3.6PropertiesofFunctionsOverviewMonotonicityofFunctionsLocalExtremeValuesofFunctionsGlobalMaximaandMinimaConvexityofFunctionsInflectionsGraphingFunctions23MonotonicityofFunctions(1)Thenecessaryandsufficientconditionforthefunctionftobemonotoneincreasing(decreasing)onIis(2)If()inI

,thenf

isstrictlymonotoneincreasing,anddifferentiableinI.

becontinuousonITheorem

LetThen(decreasing)onI.()inI;MonotonicityofFunctions4Proof(1)SufficiencyForanyiscontinuousonandisdifferentiableinBytheLagrangetheoremandtheconditionwehavewhereHence,thefunctionftobemonotoneincreasing(decreasing)onI.theintervalMonotonicityofFunctions5Proof(continued)(1)NecessitySupposethatfismonotoneincreasing(decreasing)on

I.ForanyxbelongingtotheinteriorI,thenSo,takingsuchthat6MonotonicityofFunctionsSincetherootsoftheequation

areIteasytoseethat

if

and;Example

Discussthemonotonicityofthefunction.Solution,

and.

if.7MonotonicityofFunctionsThen,wehavethefunction

isstrictlymonotoneincreasingintheintervalFinish.Solution(continued)

and;andisstrictlymonotonedecreasingintheinterval.Example

Discussthemonotonicityofthefunction.8MonotonicityofFunctionsExample

ProvethatProofInordertoobtainthegiveninequatity,weneedonlyprovethatLetthenButthesignofisstillnotclearon[0,1).LetusrepeattheproceduretoconsiderthederivativeoffunctionItiseasytoobtainMonotonicityofFunctions9Proof(continued)ByTheorem2.7.1,isstrictlymonotonedecreasingon[0,1).ThusAgainfromTheorem2.7.1,weknowthatorThisisthedesiredconclusion.Finish.Example

Provethat10ExtremeValuesofFunctionsDefinition

SupposethatIfthereisa

suchthat

(),thenwesaythatthefunctionfhasamaximum(minimum)

atMaximumandminimumvaluesaregivenajointname

extremevalue[极值],

iscalledamaximal(minimal)andthepointpoint

or

extremepoint[极值点].11ExtremeValuesofFunctions(1)Iffor

and

for,thenf

hasamaximum

(2)If

for

and

for,thenf

hasaminimum

thenthepoint

isnotanextremepoint.TheoremLetthefunctionfbedifferentiableinaneighborhoodofapoint

,and

atthepoint;(3)If

hasthesamesignonboththeleftandrightsidesofthepoint,

atthepoint;12ExtremeValuesofFunctions13ExtremeValuesofFunctionsExample

FindtheextremevaluesofthefunctionWeneedthreestepstodiscussthisproblem.,itisobviousthatthestationarypointis

and.SinceSolution(1)Findthestationarypointsandpointswherethefunctionisnotdifferentiable.non-differentiabilityareandthepointsof,(2)Inordertodeterminethesignof

intheneighborhoodsofthesepoints,wepartitiontheintervalofdefinitionofthegivenfunctionpointsandmakeatableasfollowing

bythose0460MinimalPointMaximalPointNon-extremePoint14Solution(continued)0460MinimalPointMaximalPointNon-extremePointFinish.Fromthetablewemayseethatthemaximumofthefunctionis(3)Determinetheextremevalues.,andtheminimumis.ExtremeValuesofFunctionsExample

Findtheextremevaluesofthefunction15ExtremeValuesofFunctionsExample

Findtheextremevaluesofthefunction16ExtremeValuesofFunctionsTheorem

hasasecondderivativeatapointand,Thenthefunction

hasamaximum(minimum)

if().Supposethatthefunction,.

atthepoint

Sincefhasasecondderivativeatpoint,intheneighborhood

theTaylorformulaofthefunctionfwiththesecondorderandPeanoremainderwhereSince,wehave.Proofisthefollowing17ExtremeValuesofFunctionsWecanseefromthisthatthesignof,thefirsttermofthelastexpression.,or,thenTheminimumpropertymaybeprovedsimilarly.Proof(continued)

isdeterminedbyHence,when,

isamaximumofthefunction.Finish.,Theorem

hasasecondderivativeatapointand,Thenthefunction

hasamaximum(minimum)

if().Supposethatthefunction,.

atthepoint

ExtremeValuesofFunctions18weneedonlyconsider

inaperiodicinterval.Bythelasttheorem,wemayfindtheextremeLet(2)FindthesecondderivativeofandconsideritssignattheseExample

FindtheextremevalueofthefunctionSolutionSince

isaperiodicfunction,,(1)Findthestationarypointsofthevaluebythefollowingsteps:..Wehavethestationarypoints.stationarypoints(3)Findthemaximumandminimumof.19ExtremeValuesofFunctionsThenthemaximumofthefunction

intheinterval

is;andtheminimumis.

Solution(continued)Finish.Example

Findtheextremevalueofthefunction20NoteIfwehave

atastationarypointTheorem

Supposethatthefunction

is-timesdifferentiableandThen

mustbeanextremepoint,andisamaximumof

if

andaminimumif(2)when

isodd,

isnotanextremepoint.ExtremeValuesofFunctions,thenwehavetoutilizethehigherderivativesofthefunction.

iseven,(1)when21Ifafunction

iscontinuousonaclosedintervalpropertiesofcontinuousfunctions,

musthaveaglobalmaximumitmustbealocalmaximumvalueoralocalminimumvalue;ifwewanttofindtheglobalmaximumvalueorglobalminimumvalue,

and.,thenbytheandaglobalminimumon.Andifanyofthem,say,isin,possibilityisthat

maybeoneoftheendpointsof.Therefore,weneedtofindallstationarypoints,compareallthefunctionvaluesatthesepointsandvalues(1)(2)(3)Globalmaximaandminimaanothernon-differentiablepointsandthen22GlobalmaximaandminimaAswehadseeninlastlecture,bythedefinitionofmaximumandminimalvalueofafunction,theyareonlylocalvalues.Butformanyproblems,weneedtofindthelargestvalueorsmallestvalueinthefixedinterval,andthesevalueisreferredasglobalmaximumandglobalminimum.Ifafunction

iscontinuousonaclosedintervalpropertiesofcontinuousfunctions,

musthaveaglobalmaximum.Andifanyofthem,sayitmustbealocalmaximumvalueoralocalminimumvalue;anotherifwewanttofindtheglobalmaximumvalueorglobalminimumvalue,

and.,thenbytheandaglobalminimumon,isin,possibilityisthat

maybeoneoftheendpointsof.Therefore,weneedtofindallstationarypoints,non-differentiablepointsandthencompareallthefunctionvaluesatthesepointsandvalues(1)(2)(3)Globalmaximaandminima23Note

Itisworthwhiletoindicatethatforsomespecialcases,findingglobalmaximaorminimamaybesimplified.Forinstance,iff(x)ismonotoneincreasing(decreasing)ontheinterval[a,b],thentheglobalmaximumandminimummustbeattainedattheendpointsb(ora)ora(orb,respectively;if

f(x)iscontinuouson[a,b]andhasonlyoneextremepointthenx0mustbetheglobalmaximum(minimum)pointprovideditisalocalmaximum(minimum)point.Globalmaximaandminima24Note

Tosolveapracticalproblem,wemayshouldestablishtheobjectivefunctionfirstlyandthenfindtheglobalmaximumorminimumbyfindingallthestationarypoints,non-differentiablepointsandcomparingthefunctionvaluesandthefunctionvaluesattheendofthegiveninterval.Globalmaximaandminima25

(1)Establishtheobjectivefunction.SolutionTheleastamountofmaterialmeansthesmallestsurfacearea.SupposethatthesurfaceareaofthecontainerisS,theheightisH,andtheradiusofthebottomisR.ThenBythelastequation,wehave,andthentheobjectivefunctionisExample

AcylindricalcontainerwithvolumeV0andwithoutcoveristobemadeofasheetofiron.Howshouldwedesignitifwewishtousetheleastamountofmaterial?Globalmaximaandminima26Solution(continued)(2)Findtheglobalminimum.Let;weobtainthestationarypointSincethenweknowthatitistheglobalminimumpoint.Wehave..

istheminimum.Sincethispointisuniquein,Example

AcylindricalcontainerwithvolumeV0andwithoutcoveristobemadeofasheetofiron.Howshouldwedesignitifwewishtousetheleastamountofmaterial?27GlobalmaximaandminimaSolution(continued)While,wehaveTherefore,theamountofmaterialisminimizedprovidedtheheightHand.Finish.theradiusofthebottomRareequal.Example

AcylindricalcontainerwithvolumeV0andwithoutcoveristobemadeofasheetofiron.Howshouldwedesignitifwewishtousetheleastamountofmaterial?28Globalmaximaandminima

Itiseasytoseethattheclosestpointfromustotheenemyisthebestpositionforustoshoottheenemy.Example

Supposethattheenemy’scargostraighttothenorthfrompointAwiththevelocityof1km/minandthewidthoftheriveris0.5

kilometres.AtankofourarmygoalongtheriversideanddirecttotheeastfrompointBwiththevelocityof2km/min.(Seetherightfigure)Thequestioniswhereisthebestpositiontoshootenemy?29Globalmaximaandminima(1)Findtherelationbetweenthepositionofourtankandtheenemy’scar.SolutionSupposethattisthetimewhenourtankbegintochasetheenemyfromBandthedistancebetweentheenemyandusThen(2)Findtheglobalminimalvalueof.

.Let,wefindthestationarypointItiseasytoseethatthispointisthepointofminimumvalue.afterwebegantochasetheenemy,isthebesttimeweshoottheenemy.Finish..

isTherefore,1.5minuets,30ConvexityoffunctionsConcaveFunctionConvexFunctionofbeingconvexuporconvexdownforthegraphofafunctioniscalledtheconvexityConvexityisanotherimportantpropertyoffunctions.Ingenerally,afunction,whosethegraphisconvexdown,iscalledaconcavefunction,whileafunctionwhosegraphisconvexup,iscalledconvexfunction.Thepropertyofthefunction.31Convexityoffunctions32ConvexityoffunctionsAndthen,wehavethefollowingdefinition.Definition(convexfunction)If

and

theinequalityholds,thenif,

and,wehavethenIftheinequalityofthesetwo

iscalledconvexfunctionorstrictlyconvexfunction,respectively.Let.

iscalledaconcavefunctionon;,

fiscalledastrictlyconcavefunctionon.inequalityisreversed,thenonItisnotveryeasytojudgetheconvexityofagivenfunctiondirectlyfromthedefinition.33ConvexityoffunctionsThisconclusionareeasilyunderstoodgeometrically.34ConvexityoffunctionsWeproveonlythecaseofstrictconvexity;theotherproofsaresimilar.,Itiseasytoprovethat,,

wehavetheinequalitySupposethat;notethat.ItisenoughtoproveAddingtwotermsandthenusingthemeanvaluetheoremwehaveProofSupposethat..Convexityoffunctions35Proof(continued)?where,whileSubstitutingtheseintotheaboveequalityandusingthemeanvaluetheorem,,Convexityoffunctions36Proof(continued)whereFinish..Theconclusionisproved.37Convexityoffunctions(1)(2)Example

Studytheconvexityofthefollowingfunctions(1)Sincesothepowerfunction(2)SincesothelogarithmfunctionFinish.Solution

isstrictlyconvexintheinterval.,,

isstrictlyconcavein.Convexityoffunctions38Theorem

If

iscontinuousandstrictlyconvexinanintervalI,thenthenitmustbetheglobalminimumpointsinI.hasatmostoneglobalminimumpoint,andifthereexistsauniquelocalminimumpointinI

and,sothatBythestrictconvexityof

wehaveBecause,acontradictionappears.ProofSupposethatthereexisttwominimumpoints..Convexityoffunctions39Proof(continued)Secondly,letitistheglobalminimumpointin.Supposethatthereexists,

suchthat.Bythedefinitionofconvexfunctionwehave

bealocalminimumpoint;,wewillprovethat.Theorem

If

iscontinuousandstrictlyconvexinanintervalI,thenthenitmustbetheglobalminimumpointsinI.hasatmostoneglobalminimumpoint,andifthereexistsauniquelocalminimumpointinI40Convexityoffunctions

isarbitraryon,and

canbetakenarbitrarilyclosetoInthiscase,

contradictsassumptionthat

isalocalNotethat

iscontinuousin

andProof(continued)

bytaking

closeenoughto1.Finish.minimum.So,mustbetheglobalminimumpointsinI.Theorem

If

iscontinuousandstrictlyconvexinanintervalI,thenthenitmustbetheglobalminimumpointsinI.hasatmostoneglobalminimumpoint,andifthereexistsauniquelocalminimumpointinI41ConvexityoffunctionsInflectionpointsWeknowthatthegraphofaconvexfunctionisconvexdown,andthe

graphofaconcavefunctionisconvexup.Concerningthetransitionpointonthecurvebetweenconvexdownandconvexup.42ConvexityoffunctionsAssumethat;ifthereexists

suchthatthecurve

isconvexdown(up)intheinterval

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论