![《高数双语》课件section 3-4_第1页](http://file4.renrendoc.com/view/ab2ec8ca5b0b57b76cab3c88d35731fe/ab2ec8ca5b0b57b76cab3c88d35731fe1.gif)
![《高数双语》课件section 3-4_第2页](http://file4.renrendoc.com/view/ab2ec8ca5b0b57b76cab3c88d35731fe/ab2ec8ca5b0b57b76cab3c88d35731fe2.gif)
![《高数双语》课件section 3-4_第3页](http://file4.renrendoc.com/view/ab2ec8ca5b0b57b76cab3c88d35731fe/ab2ec8ca5b0b57b76cab3c88d35731fe3.gif)
![《高数双语》课件section 3-4_第4页](http://file4.renrendoc.com/view/ab2ec8ca5b0b57b76cab3c88d35731fe/ab2ec8ca5b0b57b76cab3c88d35731fe4.gif)
![《高数双语》课件section 3-4_第5页](http://file4.renrendoc.com/view/ab2ec8ca5b0b57b76cab3c88d35731fe/ab2ec8ca5b0b57b76cab3c88d35731fe5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Section3.4-3.6PropertiesofFunctionsOverviewMonotonicityofFunctionsLocalExtremeValuesofFunctionsGlobalMaximaandMinimaConvexityofFunctionsInflectionsGraphingFunctions23MonotonicityofFunctions(1)Thenecessaryandsufficientconditionforthefunctionftobemonotoneincreasing(decreasing)onIis(2)If()inI
,thenf
isstrictlymonotoneincreasing,anddifferentiableinI.
becontinuousonITheorem
LetThen(decreasing)onI.()inI;MonotonicityofFunctions4Proof(1)SufficiencyForanyiscontinuousonandisdifferentiableinBytheLagrangetheoremandtheconditionwehavewhereHence,thefunctionftobemonotoneincreasing(decreasing)onI.theintervalMonotonicityofFunctions5Proof(continued)(1)NecessitySupposethatfismonotoneincreasing(decreasing)on
I.ForanyxbelongingtotheinteriorI,thenSo,takingsuchthat6MonotonicityofFunctionsSincetherootsoftheequation
areIteasytoseethat
if
and;Example
Discussthemonotonicityofthefunction.Solution,
and.
if.7MonotonicityofFunctionsThen,wehavethefunction
isstrictlymonotoneincreasingintheintervalFinish.Solution(continued)
and;andisstrictlymonotonedecreasingintheinterval.Example
Discussthemonotonicityofthefunction.8MonotonicityofFunctionsExample
ProvethatProofInordertoobtainthegiveninequatity,weneedonlyprovethatLetthenButthesignofisstillnotclearon[0,1).LetusrepeattheproceduretoconsiderthederivativeoffunctionItiseasytoobtainMonotonicityofFunctions9Proof(continued)ByTheorem2.7.1,isstrictlymonotonedecreasingon[0,1).ThusAgainfromTheorem2.7.1,weknowthatorThisisthedesiredconclusion.Finish.Example
Provethat10ExtremeValuesofFunctionsDefinition
SupposethatIfthereisa
suchthat
(),thenwesaythatthefunctionfhasamaximum(minimum)
atMaximumandminimumvaluesaregivenajointname
extremevalue[极值],
iscalledamaximal(minimal)andthepointpoint
or
extremepoint[极值点].11ExtremeValuesofFunctions(1)Iffor
and
for,thenf
hasamaximum
(2)If
for
and
for,thenf
hasaminimum
thenthepoint
isnotanextremepoint.TheoremLetthefunctionfbedifferentiableinaneighborhoodofapoint
,and
atthepoint;(3)If
hasthesamesignonboththeleftandrightsidesofthepoint,
atthepoint;12ExtremeValuesofFunctions13ExtremeValuesofFunctionsExample
FindtheextremevaluesofthefunctionWeneedthreestepstodiscussthisproblem.,itisobviousthatthestationarypointis
and.SinceSolution(1)Findthestationarypointsandpointswherethefunctionisnotdifferentiable.non-differentiabilityareandthepointsof,(2)Inordertodeterminethesignof
intheneighborhoodsofthesepoints,wepartitiontheintervalofdefinitionofthegivenfunctionpointsandmakeatableasfollowing
bythose0460MinimalPointMaximalPointNon-extremePoint14Solution(continued)0460MinimalPointMaximalPointNon-extremePointFinish.Fromthetablewemayseethatthemaximumofthefunctionis(3)Determinetheextremevalues.,andtheminimumis.ExtremeValuesofFunctionsExample
Findtheextremevaluesofthefunction15ExtremeValuesofFunctionsExample
Findtheextremevaluesofthefunction16ExtremeValuesofFunctionsTheorem
hasasecondderivativeatapointand,Thenthefunction
hasamaximum(minimum)
if().Supposethatthefunction,.
atthepoint
Sincefhasasecondderivativeatpoint,intheneighborhood
theTaylorformulaofthefunctionfwiththesecondorderandPeanoremainderwhereSince,wehave.Proofisthefollowing17ExtremeValuesofFunctionsWecanseefromthisthatthesignof,thefirsttermofthelastexpression.,or,thenTheminimumpropertymaybeprovedsimilarly.Proof(continued)
isdeterminedbyHence,when,
isamaximumofthefunction.Finish.,Theorem
hasasecondderivativeatapointand,Thenthefunction
hasamaximum(minimum)
if().Supposethatthefunction,.
atthepoint
ExtremeValuesofFunctions18weneedonlyconsider
inaperiodicinterval.Bythelasttheorem,wemayfindtheextremeLet(2)FindthesecondderivativeofandconsideritssignattheseExample
FindtheextremevalueofthefunctionSolutionSince
isaperiodicfunction,,(1)Findthestationarypointsofthevaluebythefollowingsteps:..Wehavethestationarypoints.stationarypoints(3)Findthemaximumandminimumof.19ExtremeValuesofFunctionsThenthemaximumofthefunction
intheinterval
is;andtheminimumis.
Solution(continued)Finish.Example
Findtheextremevalueofthefunction20NoteIfwehave
atastationarypointTheorem
Supposethatthefunction
is-timesdifferentiableandThen
mustbeanextremepoint,andisamaximumof
if
andaminimumif(2)when
isodd,
isnotanextremepoint.ExtremeValuesofFunctions,thenwehavetoutilizethehigherderivativesofthefunction.
iseven,(1)when21Ifafunction
iscontinuousonaclosedintervalpropertiesofcontinuousfunctions,
musthaveaglobalmaximumitmustbealocalmaximumvalueoralocalminimumvalue;ifwewanttofindtheglobalmaximumvalueorglobalminimumvalue,
and.,thenbytheandaglobalminimumon.Andifanyofthem,say,isin,possibilityisthat
maybeoneoftheendpointsof.Therefore,weneedtofindallstationarypoints,compareallthefunctionvaluesatthesepointsandvalues(1)(2)(3)Globalmaximaandminimaanothernon-differentiablepointsandthen22GlobalmaximaandminimaAswehadseeninlastlecture,bythedefinitionofmaximumandminimalvalueofafunction,theyareonlylocalvalues.Butformanyproblems,weneedtofindthelargestvalueorsmallestvalueinthefixedinterval,andthesevalueisreferredasglobalmaximumandglobalminimum.Ifafunction
iscontinuousonaclosedintervalpropertiesofcontinuousfunctions,
musthaveaglobalmaximum.Andifanyofthem,sayitmustbealocalmaximumvalueoralocalminimumvalue;anotherifwewanttofindtheglobalmaximumvalueorglobalminimumvalue,
and.,thenbytheandaglobalminimumon,isin,possibilityisthat
maybeoneoftheendpointsof.Therefore,weneedtofindallstationarypoints,non-differentiablepointsandthencompareallthefunctionvaluesatthesepointsandvalues(1)(2)(3)Globalmaximaandminima23Note
Itisworthwhiletoindicatethatforsomespecialcases,findingglobalmaximaorminimamaybesimplified.Forinstance,iff(x)ismonotoneincreasing(decreasing)ontheinterval[a,b],thentheglobalmaximumandminimummustbeattainedattheendpointsb(ora)ora(orb,respectively;if
f(x)iscontinuouson[a,b]andhasonlyoneextremepointthenx0mustbetheglobalmaximum(minimum)pointprovideditisalocalmaximum(minimum)point.Globalmaximaandminima24Note
Tosolveapracticalproblem,wemayshouldestablishtheobjectivefunctionfirstlyandthenfindtheglobalmaximumorminimumbyfindingallthestationarypoints,non-differentiablepointsandcomparingthefunctionvaluesandthefunctionvaluesattheendofthegiveninterval.Globalmaximaandminima25
(1)Establishtheobjectivefunction.SolutionTheleastamountofmaterialmeansthesmallestsurfacearea.SupposethatthesurfaceareaofthecontainerisS,theheightisH,andtheradiusofthebottomisR.ThenBythelastequation,wehave,andthentheobjectivefunctionisExample
AcylindricalcontainerwithvolumeV0andwithoutcoveristobemadeofasheetofiron.Howshouldwedesignitifwewishtousetheleastamountofmaterial?Globalmaximaandminima26Solution(continued)(2)Findtheglobalminimum.Let;weobtainthestationarypointSincethenweknowthatitistheglobalminimumpoint.Wehave..
istheminimum.Sincethispointisuniquein,Example
AcylindricalcontainerwithvolumeV0andwithoutcoveristobemadeofasheetofiron.Howshouldwedesignitifwewishtousetheleastamountofmaterial?27GlobalmaximaandminimaSolution(continued)While,wehaveTherefore,theamountofmaterialisminimizedprovidedtheheightHand.Finish.theradiusofthebottomRareequal.Example
AcylindricalcontainerwithvolumeV0andwithoutcoveristobemadeofasheetofiron.Howshouldwedesignitifwewishtousetheleastamountofmaterial?28Globalmaximaandminima
Itiseasytoseethattheclosestpointfromustotheenemyisthebestpositionforustoshoottheenemy.Example
Supposethattheenemy’scargostraighttothenorthfrompointAwiththevelocityof1km/minandthewidthoftheriveris0.5
kilometres.AtankofourarmygoalongtheriversideanddirecttotheeastfrompointBwiththevelocityof2km/min.(Seetherightfigure)Thequestioniswhereisthebestpositiontoshootenemy?29Globalmaximaandminima(1)Findtherelationbetweenthepositionofourtankandtheenemy’scar.SolutionSupposethattisthetimewhenourtankbegintochasetheenemyfromBandthedistancebetweentheenemyandusThen(2)Findtheglobalminimalvalueof.
.Let,wefindthestationarypointItiseasytoseethatthispointisthepointofminimumvalue.afterwebegantochasetheenemy,isthebesttimeweshoottheenemy.Finish..
isTherefore,1.5minuets,30ConvexityoffunctionsConcaveFunctionConvexFunctionofbeingconvexuporconvexdownforthegraphofafunctioniscalledtheconvexityConvexityisanotherimportantpropertyoffunctions.Ingenerally,afunction,whosethegraphisconvexdown,iscalledaconcavefunction,whileafunctionwhosegraphisconvexup,iscalledconvexfunction.Thepropertyofthefunction.31Convexityoffunctions32ConvexityoffunctionsAndthen,wehavethefollowingdefinition.Definition(convexfunction)If
and
theinequalityholds,thenif,
and,wehavethenIftheinequalityofthesetwo
iscalledconvexfunctionorstrictlyconvexfunction,respectively.Let.
iscalledaconcavefunctionon;,
fiscalledastrictlyconcavefunctionon.inequalityisreversed,thenonItisnotveryeasytojudgetheconvexityofagivenfunctiondirectlyfromthedefinition.33ConvexityoffunctionsThisconclusionareeasilyunderstoodgeometrically.34ConvexityoffunctionsWeproveonlythecaseofstrictconvexity;theotherproofsaresimilar.,Itiseasytoprovethat,,
wehavetheinequalitySupposethat;notethat.ItisenoughtoproveAddingtwotermsandthenusingthemeanvaluetheoremwehaveProofSupposethat..Convexityoffunctions35Proof(continued)?where,whileSubstitutingtheseintotheaboveequalityandusingthemeanvaluetheorem,,Convexityoffunctions36Proof(continued)whereFinish..Theconclusionisproved.37Convexityoffunctions(1)(2)Example
Studytheconvexityofthefollowingfunctions(1)Sincesothepowerfunction(2)SincesothelogarithmfunctionFinish.Solution
isstrictlyconvexintheinterval.,,
isstrictlyconcavein.Convexityoffunctions38Theorem
If
iscontinuousandstrictlyconvexinanintervalI,thenthenitmustbetheglobalminimumpointsinI.hasatmostoneglobalminimumpoint,andifthereexistsauniquelocalminimumpointinI
and,sothatBythestrictconvexityof
wehaveBecause,acontradictionappears.ProofSupposethatthereexisttwominimumpoints..Convexityoffunctions39Proof(continued)Secondly,letitistheglobalminimumpointin.Supposethatthereexists,
suchthat.Bythedefinitionofconvexfunctionwehave
bealocalminimumpoint;,wewillprovethat.Theorem
If
iscontinuousandstrictlyconvexinanintervalI,thenthenitmustbetheglobalminimumpointsinI.hasatmostoneglobalminimumpoint,andifthereexistsauniquelocalminimumpointinI40Convexityoffunctions
isarbitraryon,and
canbetakenarbitrarilyclosetoInthiscase,
contradictsassumptionthat
isalocalNotethat
iscontinuousin
andProof(continued)
bytaking
closeenoughto1.Finish.minimum.So,mustbetheglobalminimumpointsinI.Theorem
If
iscontinuousandstrictlyconvexinanintervalI,thenthenitmustbetheglobalminimumpointsinI.hasatmostoneglobalminimumpoint,andifthereexistsauniquelocalminimumpointinI41ConvexityoffunctionsInflectionpointsWeknowthatthegraphofaconvexfunctionisconvexdown,andthe
graphofaconcavefunctionisconvexup.Concerningthetransitionpointonthecurvebetweenconvexdownandconvexup.42ConvexityoffunctionsAssumethat;ifthereexists
suchthatthecurve
isconvexdown(up)intheinterval
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园文化建设与学校发展战略
- 行为习惯与孩子未来家庭教育的长远影响
- DB6103T 80-2025猕猴桃园覆土栽培香菇技术规范
- 不可撤销物业服务合同范例
- 中保人寿幸福家园保险合同范本(A)
- 临街旺铺租赁合同样本
- 二手车买卖合同(权威版)
- 业务拓展与培训合作合同
- 上海市物流运输合同范本
- 个人信用担保贷款合同范文
- 美容卫生管理制度
- 铜陵2025年安徽铜陵郊区周潭镇招聘乡村振兴专干和村级后备干部5人笔试历年参考题库附带答案详解
- 2025年纪检办公室工作计划范文
- 起重机械安装吊装危险源辨识、风险评价表
- 华北理工儿童口腔医学教案06儿童咬合诱导
- 中国建筑项目管理表格
- 高一3班第一次月考总结班会课件
- 公共政策分析导论教学课件汇总完整版电子教案
- 我国油菜生产机械化技术(-119)
- 大跨度斜拉桥上部结构施工技术(图文并茂)
- 论人口模型论文计划生育政策调整对人口数量结构及其影响
评论
0/150
提交评论