高考数学所有公式及结论总结大全_第1页
高考数学所有公式及结论总结大全_第2页
高考数学所有公式及结论总结大全_第3页
高考数学所有公式及结论总结大全_第4页
高考数学所有公式及结论总结大全_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.z.高考数学常用公式及结论200条集合元素与集合的关系,.德摩根公式.包含关系容斥原理.集合的子集个数共有个;真子集有–1个;非空子集有–1个;非空的真子集有–2个.集合A中有M个元素,集合B中有N个元素,那么可以构造M*N个从集合A到集合B的映射;二次函数,二次方程二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)零点式.解连不等式常有以下转化形式.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地,方程有且只有一个实根在,等价于,或且,或且.闭区间上的二次函数的最值二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a>0时,假设,那么;,,.(2)当a<0时,假设,那么,假设,那么,.一元二次方程的实根分布依据:假设,那么方程在区间至少有一个实根.设,那么〔1〕方程在区间有根的充要条件为或;〔2〕方程在区间有根的充要条件为或或或;〔3〕方程在区间有根的充要条件为或.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间的子区间〔形如,,不同〕上含参数的二次不等式(为参数)恒成立的充要条件是.(2)在给定区间的子区间上含参数的二次不等式(为参数)恒成立的充要条件是.(3)恒成立的充要条件是或.简易逻辑真值表pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假常见结论的否认形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有〔〕个小于不小于至多有个至少有〔〕个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或四种命题的相互关系原命题互逆逆命题假设p那么q假设q那么p互互互为为互否否逆逆否否否命题逆否命题假设非p那么非q互逆假设非q那么非p充要条件〔1〕充分条件:假设,那么是充分条件.〔2〕必要条件:假设,那么是必要条件.〔3〕充要条件:假设,且,那么是充要条件.注:如果甲是乙的充分条件,那么乙是甲的必要条件;反之亦然.函数函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间可导,如果,那么为增函数;如果,那么为减函数.如果函数和都是减函数,那么在公共定义域,和函数也是减函数;如果函数和在其对应的定义域上都是减函数,那么复合函数是增函数.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;在对称区间上,奇函数的单调性一样,欧函数相反;,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数,如果一个奇函数的定义域包括0,那么必有f(0)=0;假设函数是偶函数,那么;假设函数是偶函数,那么.对于函数(),恒成立,那么函数的对称轴是函数;两个函数与的图象关于直线对称.假设,那么函数的图象关于点对称;假设,那么函数为周期为的周期函数.多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.假设将函数的图象右移、上移个单位,得到函数的图象;假设将曲线的图象右移、上移个单位,得到曲线的图象.互为反函数的两个函数的关系.假设函数存在反函数,那么其反函数为,并不是,而函数是的反函数.几个常见的函数方程(1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,.几个函数方程的周期(约定a>0)〔1〕,那么的周期T=a;〔2〕,或,或,或,那么的周期T=2a;(3),那么的周期T=3a;(4)且,那么的周期T=4a;(5),那么的周期T=5a;(6),那么的周期T=6a.指数与对数分数指数幂(1)〔,且〕.(2)〔,且〕.根式的性质〔1〕.〔2〕当为奇数时,;当为偶数时,.有理指数幂的运算性质(1).(2).(3).注:假设a>0,p是一个无理数,那么ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.指数式与对数式的互化式.对数的换底公式(,且,,且,).推论(,且,,且,,).对数的四那么运算法那么假设a>0,a≠1,M>0,N>0,那么(1);(2);(3).设函数,记.假设的定义域为,那么,且;假设的值域为,那么,且.对于的情形,需要单独检验.对数换底不等式及其推广假设,,,,那么函数(1)当时,在和上为增函数.,(2)当时,在和上为减函数.推论:设,,,且,那么〔1〕.〔2〕.平均增长率的问题如果原来产值的根底数为N,平均增长率为,那么对于时间的总产值,有.39.数列的同项公式与前n项的和的关系(数列的前n项的和为).数列等差数列的通项公式;其前n项和公式为.等比数列的通项公式;其前n项的和公式为或.等比差数列:的通项公式为;其前n项和公式为.分期付款(按揭贷款)每次还款元(贷款元,次还清,每期利率为).三角函数常见三角不等式〔1〕假设,那么.(2)假设,那么.(3).同角三角函数的根本关系式,=,.正弦、余弦的诱导公式(n为偶数)(n为奇数)(n为偶数)(n为奇数)(n为偶数)(n为奇数)(n为偶数)(n为奇数)和角与差角公式;;.(平方正弦公式);.=(辅助角所在象限由点的象限决定,).半角正余切公式:二倍角公式...三倍角公式...三角函数的周期公式函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的周期;函数,(A,ω,为常数,且A≠0,ω>0)的周期.正弦定理.余弦定理;;.面积定理〔1〕〔分别表示a、b、c边上的高〕.〔2〕.(3).三角形角和定理在△ABC中,有.在三角形中有以下恒等式:①②简单的三角方程的通解...特别地,有...最简单的三角不等式及其解集角的变形:向量实数与向量的积的运算律设λ、μ为实数,那么(1)结合律:λ(μa)=(λμ)a;(2)第一分配律:(λ+μ)a=λa+μa;(3)第二分配律:λ(a+b)=λa+λb.向量的数量积的运算律:(1)a·b=b·a〔交换律〕;(2)〔a〕·b=〔a·b〕=a·b=a·〔b〕;(3)〔a+b〕·c=a·c+b·c.平面向量根本定理如果e1、e2是同一平面的两个不共线向量,那么对于这一平面的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.不共线的向量e1、e2叫做表示这一平面所有向量的一组基底.向量平行的坐标表示设a=,b=,且b0,那么ab(b0).a与b的数量积(或积)a·b=|a||b|cosθ.a·b的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.平面向量的坐标运算(1)设a=,b=,那么a+b=.(2)设a=,b=,那么a-b=.(3)设A,B,那么.(4)设a=,那么a=.(5)设a=,b=,那么a·b=.两向量的夹角公式(a=,b=).平面两点间的距离公式=(A,B).向量的平行与垂直设a=,b=,且b0,那么A||bb=λa.ab(a0)a·b=0.线段的定比分公式设,,是线段的分点,是实数,且,那么〔〕.三角形的重心坐标公式△ABC三个顶点的坐标分别为、、,那么△ABC的重心的坐标是.点的平移公式.注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为."按向量平移〞的几个结论〔1〕点按向量a=平移后得到点.(2)函数的图象按向量a=平移后得到图象,那么的函数解析式为.(3)图象按向量a=平移后得到图象,假设的解析式,那么的函数解析式为.(4)曲线:按向量a=平移后得到图象,那么的方程为.(5)向量m=按向量a=平移后得到的向量仍然为m=.三角形五"心〞向量形式的充要条件设为所在平面上一点,角所对边长分别为,那么〔1〕为的外心.〔2〕为的重心.〔3〕为的垂心.〔4〕为的心.〔5〕为的的旁心.不等式常用不等式:〔1〕(当且仅当a=b时取"=〞号).〔2〕(当且仅当a=b时取"=〞号).〔3〕〔4〕柯西不等式〔5〕.极值定理都是正数,那么有〔1〕假设积是定值,那么当时和有最小值;〔2〕假设和是定值,那么当时积有最大值.推广,那么有〔1〕假设积是定值,那么当最大时,最大;当最小时,最小.〔2〕假设和是定值,那么当最大时,最小;当最小时,最大.一元二次不等式,如果与同号,那么其解集在两根之外;如果与异号,那么其解集在两根之间.简言之:同号两根之外,异号两根之间.;.含有绝对值的不等式当a>0时,有.或.75.无理不等式〔1〕.〔2〕.〔3〕.指数不等式与对数不等式(1)当时,;.(2)当时,;直线方程斜率公式①〔、〕.②k=tanα(α为直线倾斜角〕直线的五种方程〔1〕点斜式(直线过点,且斜率为).〔2〕斜截式(b为直线在y轴上的截距).〔3〕两点式()(、()).(4)截距式(分别为直线的横、纵截距,)〔5〕一般式(其中A、B不同时为0).两条直线的平行和垂直(1)假设,①;②.(2)假设,,且A1、A2、B1、B2都不为零,①;②两直线垂直的充要条件是;即:夹角公式(1).(,,)(2).(,,).直线时,直线l1与l2的夹角是.到的角公式(1).(,,)(2).(,,).直线时,直线l1到l2的角是.四种常用直线系方程(1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数;经过定点的直线系方程为,其中是待定的系数.(2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中λ是待定的系数.(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程.与直线平行的直线系方程是(),λ是参变量.(4)垂直直线系方程:与直线(A≠0,B≠0)垂直的直线系方程是,λ是参变量.点到直线的距离(点,直线:).或所表示的平面区域设直线,假设A>0,那么在坐标平面从左至右的区域依次表示,,假设A<0,那么在坐标平面从左至右的区域依次表示,,可记为"x为正开口对,X为负背靠背"。〔正负指X的系数A,开口对指〞<>",背靠背指"><"〕85.或所表示的平面区域设曲线〔〕,那么或所表示的平面区域是:所表示的平面区域上下两局部;所表示的平面区域上下两局部.圆圆的四种方程〔1〕圆的标准方程.〔2〕圆的一般方程(>0).〔3〕圆的参数方程.〔4〕圆的直径式方程(圆的直径的端点是、).圆系方程(1)过点,的圆系方程是,其中是直线的方程,λ是待定的系数.(2)过直线:与圆:的交点的圆系方程是,λ是待定的系数.(3)过圆:与圆:的交点的圆系方程是,λ是待定的系数.点与圆的位置关系点与圆的位置关系有三种假设,那么点在圆外;点在圆上;点在圆.直线与圆的位置关系直线与圆的位置关系有三种:;;.其中.两圆位置关系的判定方法设两圆圆心分别为O1,O2,半径分别为r1,r2,;;;;.91.圆的切线方程(1)圆.①假设切点在圆上,那么切线只有一条,其方程是.当圆外时,表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.③斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线.(2)圆.①过圆上的点的切线方程为;②斜率为的圆的切线方程为.椭圆椭圆的参数方程是.椭圆焦半径公式,,焦点三角形:P为椭圆上一点,那么三角形的面积S=特别地,假设此三角形面积为;在椭圆上存在点P,使的条件是c≥b,即椭圆的离心率e的围是;椭圆的的外部〔1〕点在椭圆的部.〔2〕点在椭圆的外部.椭圆的切线方程(1)椭圆上一点处的切线方程是.〔2〕过椭圆外一点所引两条切线的切点弦方程是.〔3〕椭圆与直线相切的条件是.双曲线双曲线的焦半径公式,.双曲线的外部(1)点在双曲线的部.(2)点在双曲线的外部.双曲线的方程与渐近线方程的关系(1〕假设双曲线方程为渐近线方程:.(2)假设渐近线方程为双曲线可设为.(3)假设双曲线与有公共渐近线,可设为〔,焦点在x轴上,,焦点在y轴上〕.双曲线的切线方程(1)双曲线上一点处的切线方程是.〔2〕过双曲线外一点所引两条切线的切点弦方程是.〔3〕双曲线与直线相切的条件是.焦点到渐近线的距离等于虚半轴的长度〔即b值〕抛物线焦点与半径焦半径公式抛物线,C为抛物线上一点,焦半径.过焦点弦长.对焦点在y轴上的抛物线有类似结论。设点方法抛物线上的动点可设为P或P,其中.二次函数的图象是抛物线:〔1〕顶点坐标为;〔2〕焦点的坐标为;〔3〕准线方程是.抛物线的外部(1)点在抛物线的部.点在抛物线的外部.(2)点在抛物线的部.点在抛物线的外部.(3)点在抛物线的部.点在抛物线的外部.(4)点在抛物线的部.点在抛物线的外部.抛物线的切线方程(1)抛物线上一点处的切线方程是.〔2〕过抛物线外一点所引两条切线的切点弦方程是.〔3〕抛物线与直线相切的条件是.过抛物线〔p>0)的焦点F的直线与抛物线相交于圆锥曲线共性问题两个常见的曲线系方程(1)过曲线,的交点的曲线系方程是(为参数).(2)共焦点的有心圆锥曲线系方程,其中.当时,表示椭圆;当时,表示双曲线.直线与圆锥曲线相交的弦长公式或〔弦端点A由方程消去y得到,,为直线的倾斜角,为直线的斜率〕.涉及到曲线上的点A,B及线段AB的中点M的关系时,可以利用"点差法:,比方在椭圆中:圆锥曲线的两类对称问题〔1〕曲线关于点成中心对称的曲线是.〔2〕曲线关于直线成轴对称的曲线是."四线〞一方程对于一般的二次曲线,用代,用代,用代,用代,用代即得方程,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.立体几何109.证明直线与直线的平行的思考途径〔1〕转化为判定共面二直线无交点;〔2〕转化为二直线同与第三条直线平行;〔3〕转化为线面平行;〔4〕转化为线面垂直;〔5〕转化为面面平行.110.证明直线与平面的平行的思考途径〔1〕转化为直线与平面无公共点;〔2〕转化为线线平行;〔3〕转化为面面平行.111.证明平面与平面平行的思考途径〔1〕转化为判定二平面无公共点;〔2〕转化为线面平行;〔3〕转化为线面垂直.112.证明直线与直线的垂直的思考途径〔1〕转化为相交垂直;〔2〕转化为线面垂直;〔3〕转化为线与另一线的射影垂直;〔4〕转化为线与形成射影的斜线垂直.113.证明直线与平面垂直的思考途径〔1〕转化为该直线与平面任一直线垂直;〔2〕转化为该直线与平面相交二直线垂直;〔3〕转化为该直线与平面的一条垂线平行;〔4〕转化为该直线垂直于另一个平行平面;〔5〕转化为该直线与两个垂直平面的交线垂直.114.证明平面与平面的垂直的思考途径〔1〕转化为判断二面角是直二面角;〔2〕转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律(1)加法交换律:a+b=b+a.(2)加法结合律:(a+b)+c=a+(b+c).(3)数乘分配律:λ(a+b)=λa+λb.116.平面向量加法的平行四边形法那么向空间的推广始点一样且不在同一个平面的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a、b(b≠0),a∥b存在实数λ使a=λb.三点共线.、共线且不共线且不共线.118.共面向量定理向量p与两个不共线的向量a、b共面的存在实数对,使.推论空间一点P位于平面MAB的存在有序实数对,使,或对空间任一定点O,有序实数对,使.119.对空间任一点和不共线的三点A、B、C,满足〔〕,那么当时,对于空间任一点,总有P、A、B、C四点共面;当时,假设平面ABC,那么P、A、B、C四点共面;假设平面ABC,那么P、A、B、C四点不共面.四点共面与、共面〔平面ABC〕.120.空间向量根本定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc.推论设O、A、B、C是不共面的四点,那么对空间任一点P,都存在唯一的三个有序实数x,y,z,使.121.射影公式向量=a和轴,e是上与同方向的单位向量.作A点在上的射影,作B点在上的射影,那么〈a,e〉=a·e122.向量的直角坐标运算设a=,b=那么(1)a+b=;(2)a-b=;(3)λa=(λ∈R);(4)a·b=;123.设A,B,那么=.124.空间的线线平行或垂直设,,那么;.125.夹角公式设a=,b=,那么cos〈a,b〉=.推论,此即三维柯西不等式.126.四面体的对棱所成的角四面体中,与所成的角为,那么.127.异面直线所成角=〔其中〔〕为异面直线所成角,分别表示异面直线的方向向量〕128.直线与平面所成角(为平面的法向量).129.假设所在平面假设与过假设的平面成的角,另两边,与平面成的角分别是、,为的两个角,那么.特别地,当时,有.130.假设所在平面假设与过假设的平面成的角,另两边,与平面成的角分别是、,为的两个角,那么.特别地,当时,有.131.二面角的平面角或〔,为平面,的法向量〕.132.三余弦定理设AC是α的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为,AB与AC所成的角为,AO与AC所成的角为.那么.133.三射线定理假设夹在平面角为的二面角间的线段与二面角的两个半平面所成的角是,,与二面角的棱所成的角是θ,那么有;(当且仅当时等号成立).134.空间两点间的距离公式假设A,B,那么=.135.点到直线距离(点在直线上,直线的方向向量a=,向量b=).136.异面直线间的距离(是两异面直线,其公垂向量为,分别是上任一点,为间的距离).137.点到平面的距离〔为平面的法向量,是经过面的一条斜线,〕.138.异面直线上两点距离公式..〔〕.(两条异面直线a、b所成的角为θ,其公垂线段的长度为h.在直线a、b上分别取两点E、F,,,).139.三个向量和的平方公式140.长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,那么有.〔立体几何中长方体对角线长的公式是其特例〕.141.面积射影定理.(平面多边形及其射影的面积分别是、,它们所在平面所成锐二面角的为).142.斜棱柱的直截面斜棱柱的侧棱长是,侧面积和体积分别是和,它的直截面的周长和面积分别是和,那么①.②.143.作截面的依据三个平面两两相交,有三条交线,那么这三条交线交于一点或互相平行.144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比〔对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方〕;相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)(简单多面体的顶点数V、棱数E和面数F).〔1〕=各面多边形边数和的一半.特别地,假设每个面的边数为的多边形,那么面数F与棱数E的关系:;〔2〕假设每个顶点引出的棱数为,那么顶点数V与棱数E的关系:.146.球的半径是R,那么其体积,其外表积.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的切球的直径是正方体的棱长,正方体的棱切球的直径是正方体的面对角线长,正方体的外接球的直径是正方体的体对角线长.(3)球与正四面体的组合体:棱长为的正四面体的切球的半径为,外接球的半径为.148.柱体、锥体的体积〔是柱体的底面积、是柱体的高〕.〔是锥体的底面积、是锥体的高〕.排列组合分类计数原理〔加法原理〕.分步计数原理〔乘法原理〕.排列数公式==.(,∈N*,且).注:规定.排列恒等式(1〕;〔2〕;〔3〕;〔4〕;〔5〕.(6).组合数公式===(∈N*,,且).组合数的两个性质(1)=;(2)+=.注:规定.组合恒等式〔1〕;〔2〕;〔3〕;〔4〕=;〔5〕.(6).(7).(8).(9).(10).排列数与组合数的关系.单条件排列以下各条的大前提是从个元素中取个元素的排列.〔1〕"在位〞与"不在位〞①某〔特〕元必在某位有种;②某〔特〕元不在某位有〔补集思想〕〔着眼位置〕〔着眼元素〕种.〔2〕紧贴与插空〔即相邻与不相邻〕①定位紧贴:个元在固定位的排列有种.②浮动紧贴:个元素的全排列把k个元排在一起的排法有种.注:此类问题常用捆绑法;③插空:两组元素分别有k、h个〔〕,把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有种.〔3〕两组元素各一样的插空个大球个小球排成一列,小球必分开,问有多少种排法?当时,无解;当时,有种排法.〔4〕两组一样元素的排列:两组元素有m个和n个,各组元素分别一样的排列数为.分配问题〔1〕(平均分组有归属问题)将相异的、个物件等分给个人,各得件,其分配方法数共有.〔2〕(平均分组无归属问题)将相异的·个物体等分为无记号或无顺序的堆,其分配方法数共有.〔3〕(非平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,,…,件,且,,…,这个数彼此不相等,那么其分配方法数共有.〔4〕(非完全平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,,…,件,且,,…,这个数中分别有a、b、c、…个相等,那么其分配方法数有.〔5〕(非平均分组无归属问题)将相异的个物体分为任意的,,…,件无记号的堆,且,,…,这个数彼此不相等,那么其分配方法数有.〔6〕(非完全平均分组无归属问题)将相异的个物体分为任意的,,…,件无记号的堆,且,,…,这个数中分别有a、b、c、…个相等,那么其分配方法数有.〔7〕(限定分组有归属问题)将相异的〔〕个物体分给甲、乙、丙,……等个人,物体必须被分完,如果指定甲得件,乙得件,丙得件,…时,那么无论,,…,等个数是否全相异或不全相异其分配方法数恒有."错位问题〞及其推广贝努利装错笺问题:信封信与个信封全部错位的组合数为.推广:个元素与个位置,其中至少有个元素错位的不同组合总数为.不定方程的解的个数(1)方程〔〕的正整数解有个.(2)方程〔〕的非负整数解有个.(3)方程〔〕满足条件(,)的非负整数解有个.(4)方程〔〕满足条件(,)的正整数解有个.二项式定理;二项展开式的通项公式.概率等可能性事件的概率.互斥事件A,B分别发生的概率的和P(A+B)=P(A)+P(B).个互斥事件分别发生的概率的和P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).独立事件A,B同时发生的概率P(A·B)=P(A)·P(B)..n个独立事件同时发生的概率P(A1·A2·…·An)=P(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论