版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年云南省玉溪市重点中学高考考前冲刺数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.2.给出个数,,,,,,其规律是:第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能()A.; B.;C.; D.;3.已知正项等比数列满足,若存在两项,,使得,则的最小值为().A.16 B. C.5 D.44.在中,是的中点,,点在上且满足,则等于()A. B. C. D.5.设,其中a,b是实数,则()A.1 B.2 C. D.6.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是()A. B. C. D.7.已知非零向量,满足,,则与的夹角为()A. B. C. D.8.若为纯虚数,则z=()A. B.6i C. D.209.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是().A.与2016年相比,2019年不上线的人数有所增加B.与2016年相比,2019年一本达线人数减少C.与2016年相比,2019年二本达线人数增加了0.3倍D.2016年与2019年艺体达线人数相同10.将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是()A. B. C. D.11.复数满足(为虚数单位),则的值是()A. B. C. D.12.已知实数,满足约束条件,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.复数为虚数单位)的虚部为__________.14.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点A,B,C,D.若AB=BC,则实数t的值为_________.15.已知集合,,则__________.16.若且时,不等式恒成立,则实数a的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知平面与直线均垂直于所在平面,且.(1)求证:平面;(2)若,求与平面所成角的正弦值.18.(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.19.(12分)如图,平面分别是上的动点,且.(1)若平面与平面的交线为,求证:;(2)当平面平面时,求平面与平面所成的二面角的余弦值.20.(12分)如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.(1)证明:AP∥平面EBD;(2)证明:BE⊥PC.21.(12分)已知函数,若的解集为.(1)求的值;(2)若正实数,,满足,求证:.22.(10分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.2、A【解析】
要计算这个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②.【详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句①应为,第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,这样可以确定语句②为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.3、D【解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【详解】设等比数列公比为,由已知,,即,解得或(舍),又,所以,即,故,所以,当且仅当时,等号成立.故选:D.【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.4、B【解析】
由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.【详解】解:∵M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足∴P是三角形ABC的重心∴又∵AM=1∴∴故选B.【点睛】判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.5、D【解析】
根据复数相等,可得,然后根据复数模的计算,可得结果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.6、C【解析】∵y=f(x+1)是偶函数,∴f(-x+1)=f(x+1),即函数f(x)关于x=1对称.
∵当x≥1时,为减函数,∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故选C7、B【解析】
由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.【详解】根据平面向量数量积的垂直关系可得,,所以,即,由平面向量数量积定义可得,所以,而,即与的夹角为.故选:B【点睛】本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.8、C【解析】
根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】∵为纯虚数,∴且得,此时故选:C.【点睛】本题考查复数的概念与运算,属基础题.9、A【解析】
设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详解】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.10、B【解析】设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B.11、C【解析】
直接利用复数的除法的运算法则化简求解即可.【详解】由得:本题正确选项:【点睛】本题考查复数的除法的运算法则的应用,考查计算能力.12、B【解析】
画出可行域,根据可行域上的点到原点距离,求得的取值范围.【详解】由约束条件作出可行域是由,,三点所围成的三角形及其内部,如图中阴影部分,而可理解为可行域内的点到原点距离的平方,显然原点到所在的直线的距离是可行域内的点到原点距离的最小值,此时,点到原点的距离是可行域内的点到原点距离的最大值,此时.所以的取值范围是.故选:B【点睛】本小题考查线性规划,两点间距离公式等基础知识;考查运算求解能力,数形结合思想,应用意识.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】试题分析:,即虚部为1,故填:1.考点:复数的代数运算14、【解析】
由是偶函数可得时恒有,根据该恒等式即可求得,,的值,从而得到,令,可解得,,三点的横坐标,根据可列关于的方程,解出即可.【详解】解:因为是偶函数,所以时恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因为,所以,即,解得,故答案为:.【点睛】本题考查函数奇偶性的性质及二次函数的图象、性质,考查学生的计算能力,属中档题.15、【解析】
解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.【详解】,,.故答案为:.【点睛】本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.16、【解析】
将不等式两边同时平方进行变形,然后得到对应不等式组,对的取值进行分类,将问题转化为二次函数在区间上恒正、恒负时求参数范围,列出对应不等式组,即可求解出的取值范围.【详解】因为,所以,所以,所以,所以或,当时,对且不成立,当时,取,显然不满足,所以,所以,解得;当时,取,显然不满足,所以,所以,解得,综上可得的取值范围是:.故答案为:.【点睛】本题考查根据不等式恒成立求解参数范围,难度较难.根据不等式恒成立求解参数范围的两种常用方法:(1)分类讨论法:分析参数的临界值,对参数分类讨论;(2)参变分离法:将参数单独分离出来,再以函数的最值与参数的大小关系求解出参数范围.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(Ⅰ)证明:过点作于点,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴点是的中点,连结,则∴平面∴∥,∴四边形是矩形设,得:,又∵,∴,从而,过作于点,则∴是与平面所成角∴,∴与平面所成角的正弦值为考点:面面垂直的性质定理;线面平行的判定定理;线面垂直的性质定理;直线与平面所成的角.点评:本题主要考查了线面平行的证明和直线与平面所成的角,属立体几何中的常考题型,较难.本题也可以用向量法来做:用向量法解题的关键是;首先正确的建立空间直角坐标系,正确求解平面的一个法向量.注意计算要仔细、认真.≌18、(1)(2)【解析】
(1)由基本量法,求出公比后可得通项公式;(2)求出,用裂项相消法求和.【详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,,所以所以【点睛】本题考查求等比数列的通项公式,考查裂项相消法求和.解题方法是基本量法.基本量法是解决等差数列和等比数列的基本方法,务必掌握.19、(1)见解析;(2)【解析】
(1)首先由线面平行的判定定理可得平面,再由线面平行的性质定理即可得证;(2)以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值;【详解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因为平面,所以,又,所以平面,所以,又,所以.若平面平面,则平面,所以,由且,又,所以.以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,则,,设则由,可得,,即,所以可得,所以,设平面的一个法向量为,则,,,取,得所以易知平面的法向量为,设平面与平面所成的二面角为,则,结合图形可知平面与平面所成的二面角的余弦值为.【点睛】本题考查线面平行的判定定理及性质定理的应用,利用空间向量法求二面角,解题时要认真审题,注意空间思维能力的培养,属于中档题.20、(1)见解析(2)见解析【解析】
(1)连结AC交BD于点O,连结OE,利用三角形中位线可得AP∥OE,从而可证AP∥平面EBD;(2)先证明BD⊥平面PCD,再证明PC⊥平面BDE,从而可证BE⊥PC.【详解】证明:(1)连结AC交BD于点O,连结OE因为四边形ABCD为平行四边形∴O为AC中点,又E为PC中点,故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD
;(2)∵△PCD为正三角形,E为PC中点所以PC⊥DE因为平面PCD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【点睛】本题主要考查空间位置关系的证明,线面平行一般转化为线线平行来证明,直线与直线垂直通常利用线面垂直来进行证明,侧重考查逻辑推理的核心素养.21、(1);(2)证明见详解.【解析】
(1)将不等式的解集用表示出来,结合题中的解集,求出的值;(2)利用柯西不等式证明.【详解】解:(1),,,因为的解集为,所以,;(2)由(1)由柯西不等式,当且仅当,,,等号成立.【点睛】本题考查了绝对值不等式的解法,利用柯西不等式证明不等式的问题,属于中档题.22、(1);(2).【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年库房转租合同转租条件、转租手续及租金处理分析
- 2024年企业内部审计保密协议
- 2024年度企业社会责任报告合同
- 2024年度住宅小区木门安装工程合同
- 2024年度许可使用合同(商标)
- 腰椎ct课件教学课件
- 2024北京技术合同
- 2024年大数据使用协议:数据收集、分析和应用的具体规定
- 液体密度课件教学课件
- 舆论学课件教学
- 医院全员教育培训管理工作制度规定办法.docx
- 二十四孝故事
- 英语课堂小说《月亮与六便士》(课堂PPT)
- 专项基金投资募集合作框架协议模版
- (完整word版)拼音练习jqx和ü、üe的相拼
- 医疗质量检查分析、总结、反馈5篇
- 桅杆工艺技术及施工要求
- (完整版)六年级下册体育教学计划与教案
- 北京地铁受电弓的维护与故障检修-毕业设计说明书
- 幼儿园教育和家庭教育的有效结合研究
- 集团公司两金管理评价办法
评论
0/150
提交评论