下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
小学教育复习系列资料小学教育复习系列资料小学教育复习系列资料解题技巧专题:巧用旋转进行计算或证明——体会旋转中常见解题技巧eq\a\vs4\al(◆)类型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度1.(2016·合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC于点F,则∠BAC的度数为()A.60°B.85°C.75°D.90°第1题图第2题图第3题图2.(2016·株洲中考)如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到△A′B′C.若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为________.4.如图,P是正三角形ABC内的一点,且PA=5,PB=12,PC=13,若将△PAC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.eq\a\vs4\al(◆)类型二利用旋转结合特殊三角形判定、性质或勾股定理求长度或证明5.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为()A.2B.3C.2eq\r(3)D.3eq\r(2)如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.7.(2016·娄底中考)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状,并说明理由.eq\a\vs4\al(◆)类型三利用旋转计算面积8.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是()A.eq\r(2)-1B.eq\r(2)+1C.eq\r(2)D.eq\r(3)第8题图第9题图9.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则△DCE的面积为________.【方法3】参考答案与解析1.B解析:∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=70°,∠BAC=∠DAE.∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°-∠C=90°-70°=20°,∴∠DAE=∠CAF+∠EAC=20°+65°=85°,∴∠BAC=∠DAE=85°.2.B3.90°解析:∵将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=eq\f(1,2)(180°-120°)=30°.∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.4.解:连接PP′.∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.∵△PAC绕点A逆时针旋转后,得到△P′AB,∴∠P′AP=∠BAC=60°,AP′=AP,BP′=CP=13,∴△AP′P为等边三角形,∴PP′=AP=5,∠APP′=60°.在△BPP′中,∵PP′=5,BP=12,BP′=13,∴PP′2+BP2=BP′2,∴△BPP′为直角三角形,∠BPP′=90°,∴∠APB=∠APP′+∠BPP′=60°+90°=150°.即点P与点P′之间的距离为5,∠APB的度数为150°.5.D解析:在Rt△ABC中,AB=eq\r(AC2+BC2)=eq\r(62+62)=6eq\r(2),则AB′=AB=6eq\r(2).在Rt△B′AD中,∠B′AD=180°-∠BAC-∠BAB′=180°-45°-75°=60°.则AD=AB′·cos∠B′AD=6eq\r(2)×eq\f(1,2)=3eq\r(2).6.eq\r(2)+eq\r(6)解析:连接AM,由题意,得CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°.∵∠ABC=90°,AB=BC=2,∴AC=CM=2eq\r(2).∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=eq\f(1,2)AC=eq\r(2),OM=CM·sin60°=eq\r(6),∴BM=BO+OM=eq\r(2)+eq\r(6).7.(1)证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C.∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1.在△BCF与△BA1D中,eq\b\lc\{(\a\vs4\al\co1(∠A1=∠C,,A1B=BC,,∠A1BD=∠CBF,))∴△BCF≌△BA1D;(2)解:四边形A1BCE是菱形.理由如下:∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴∠A1=∠A.∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∴∠DEC=180°-α.∵∠C=α,∴∠A1=α,∴∠A1BC=360°-∠A1-∠C-∠A1EC=180°-α,∴∠A1=∠C,∠A1BC=∠A1EC,∴四边形A1BCE是平行四边形.∵A1B=BC,∴四边形A1BCE是菱形.8.A解析:连接AE,∵四边形ABCD为正方形,∴AB=BC=1,且∠B=90°,∠D′CE=45°,由勾股定理得AC=eq\r(12+12)=eq\r(2).由题意,得AD′=AB=1,∠AD′E=90°,∴D′C=eq\r(2)-1,∠D′EC=∠D′CE=45°,∴D′E=D′C=eq\r(2)-1,∴S△D′EC=eq\f(1,2)(eq\r(2)-1)2=eq\f(3,2)-eq\r(2),∴S阴影=S△ABC-S△D′EC=eq\f(1,2)×1×1-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)-\r(2)))=eq\r(2)-1.9.eq\f(15,4)eq\r(7)解析:由旋转的性质得△ACE≌△ABD,∴AE=AD=5,CE=BD=6,∠DAE=60°,∴DE=5.作EH⊥CD垂足为H.设DH=x.由勾股定理得EH2=CE2-CH2=DE2-DH2,即62-(4-x)2=52-x2,解得x=eq\f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《众人行管理咨询网》课件
- 运动器材销售工作总结
- 2013年高考语文试卷(湖北)(空白卷)
- 租车服务员工作总结
- 2006年江西高考语文真题及答案
- 驱动未来新型汽车
- 2023年-2024年项目管理人员安全培训考试题附解析答案可打印
- 2023年-2024年项目部管理人员安全教育培训试题及参考答案【A卷】
- 2023-2024安全培训考试题及答案【名校卷】
- 2023年-2024年项目部安全培训考试题答案完美
- 学术不端行为治理研究
- 企业文化、战略与电力能源知识参考题库练习卷含答案(一)
- 福建南平武夷高新技术产业控股集团有限公司招聘笔试冲刺题2024
- 2024年设备维修部管理制度(6篇)
- GB/T 45083-2024再生资源分拣中心建设和管理规范
- 精神科护理工作计划例文
- 2024山地买卖合同模板
- 河北省承德市2023-2024学年高一上学期期末物理试卷(含答案)
- 【初中化学】二氧化碳的实验室制取教学课件-2024-2025学年九年级化学人教版上册
- 出租车行业服务质量提升方案
- 景区安全管理教育培训
评论
0/150
提交评论