版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ComparisonofSeatSystemResonantFrequencyTestingMethods
Aseatsystemdevelopedwithoutanaccuratestructuraldynamicsmodelhasahigher
probability
of
squeaks,
rattles,
excessiveseat
backmotion,
andpoorride
characteristics.
Iftheseissuesarenotaddressedduringdevelopmenttestingandareallowedtogointo
production,engineeringchangesaremorecostlyanddifficulttoimplement.Because
today’sseatsystemsaremorecomplex,engineersmustusethelatesttechnologyto
determinetheseatsystemresponsecharacteristics.
Modalanalysisistheprocessofdevelopingadynamicmodelofastructureora
mechanical
systemwhichwill
beusedfor
problemsolving
andtrouble
shooting,
simulation,
prediction
,andoptimization.The
dynamicmodelis
asetof
modalparameters
consisting
ofnatural
frequencies,
dampingfactors,
andmodeshapes.These
parameters
are
basedon
thestructureorsystem.Experimentalmodalanalysiscanuseeithertimebased,or
frequencydomainbasedmeasurementstocalculatethemodalparameters.Thismethod
providesthemostthoroughdefinitionofthedynamicresponsecharacteristicsofthe
isolatedseatingsystem.
ResonantImpactAnalysisisusedtodeterminetheapproximatedynamicresponseofa
seatingsystem.Thismethodprovidesfrequencyresponsefunctionswhichdescribethe
natural
frequencies
ofthe
system.Resonant
impact
analysis
provides
information
quickly,
but
doesnotdefine
the
dynamicresponsecharacteristics
ascompletely
asmodalanalysis.
Multi-axis
shakertable
testing
isanothertool
usedtodetermine
resonant
frequencies
intheseatsystem.Theshakertableisabletoinputsinesweepandrandominputsinto
theseatingsystem.Theamplitudeofthesinesweeporrandominputcanbecontrolled
inacceleration
or
displacement
control.The
shaker
table
is
alsocapable
of
simulating
roadconditions
of
acustomer’sproving
groundsin
the
laboratory.These
roads
generate
loadsin
vehiclecomponentssuchasseats.Controlled
laboratory
tests
allow
duplication
ofcomplexmulti-channel
timehistories
ofatest
specimen.The
shakertable
canreproduce
roadinputs
insix
degreesof
freedom:vertical,lateral,longitudinal,pitch,roll,
and
yawmotions.
EXPERIMENTAL
Acorrelationstudyofseatresonantfrequenciesinvolvedthecomparisonofseat
resonant
frequency
data
acquired
by:ResonantImpact
Analysis,
ModalAnalysis,
andShaker
TableTesting
using
asix-axis
simulation
reproducing
bothsinusoidal
sweepsandsimulated
roaddata.
All
seat
wereinstalled
in
theOEMdesign
position
andrigidly
attached
toeither
theshakertableormodalbedplatefortesting.
MODALANALYSIS
Modalanalysis
wasonemethodusedtocharacterize
thedynamicproperties
oftheseats.
This
involved
collecting
frequency
domain
measurements,
more
specifically
frequency
responsefunctions,todescribethedynamiccharacteristics.AnH1estimatorwasused
tocalculatethefrequencyresponsefunctionsoftheseat
systems.The
seatstructures
wereexcited
withtwoelectrodynamic
shakers,
onemountedlaterally
at
thetopofthe
seat
backandonemounted
fore/aft
at
the
bottomof
the
seat
back.The
response
wasmeasuredover
afrequency
rangeof0to
50Hzwith
200spectral
lines.Twenty
averages
weretakenforeachFRFmeasurement.
Theexcitation
signal
wasan80%burst
randomfunction.Burst
random
excitationwaschosentoexcitetheentirefrequencyrangeofinterest
uniformlyandallowthesystemresponsetodieoutpriortotheendof
themeasurement.A
burst
randomsignalis
for
FFTanalysis,
whichassumes
aperiodicsignal,because
itensuresthat
thesignallevels
arezeroat
thebeginningandattheendofthemeasurement.
Inaddition
to
theexcitation
technique,
it
wasimportant
to
test
the
seatsystems
inarepresentativeenvironment.Modalanalysiscanbe
performedinafree-free
environmentwherethe
seat
systemis
completely
suspended,
or
in
avariety
ofclampedpositions.The
samplestested
for
thispaperwereattachedtoarigid
bedplatein
designposition
tosimulate
theboundaryconditionspresentwhentheseatsystemsareinstalledin
avehicle.Therigidbedplateisexceptionallystiffrepresentingthe
optimalvehiclefloorpan.
Oncethemeasurementsweretakenandthefrequencyresponsefunctions
calculated,themodalparameterswere
estimated.Theleastsquares
complexexponentialmethodwasusedforestimatingthefrequencyand
dampingcharacteristics,
while
the
least
squaresfrequency
domainmethod
wasusedtoestimate
themodeshapes.This
methodis
accurate
for
systems
withtypicaldampingvaluesbelow5%,asseenintheseatsystemsthat
havebeentested.
Tables
1through4detail
the
modalanalysis
results
for
the
samples
tested.TheModeShapeisadescriptionofseatbackresponse,unless
thebaseisspecificallymentioned.TheFrequencyandDampingofeach
modeshapearealso
provided.Finally,
aModeParticipation
isassigned.
Thisnumber
is
thepercentage
ofthetotalresponseofthemodaldue
totheparticularmode.
Table1:BucketSeat1ModalAnalysistestResults
Modeshape
Frequency(Hz)
Damping
Mode
Participation
Backrollingabout/Axis
9.78
4.45%
2.4%
Lateral
11.76
3.85%
19.4%
Lateral
12.34
4.51%
40.4%
Fore/Aft
12.47
6.66%
22.5%
Lateraltorsionwith
14.69
2.10%
1.3%
Fore/aft
LateralBending
24.50
1.49%
3.6%
LateralBending
25.80
2.05%
6.6%
Torsion
35.59
4.54%
3.8%
Table2:BucketSeat2ModalAnalysistestResults
Modeshape
Frequency(Hz)
Damping
Mode
Participation
Fore/aft
14.22
2.16%
10.0%
Fore/aft
16.94
5.11%
26.4%
Lateral
19.38
2.21%
54.9%
VerticalTorsion
40.72
5.25%
8.7%
Table3:BucketSeat3ModalAnalysistestResults
Modeshape
Frequency(Hz)
Damping
Mode
Participation
Fore/aft
10.13
4.27%
33.1%
Fore/aft
10.80
3.14%
11.2%
Fore/aftwithSomeLateral
11.76
3.36%
32.7%
Lateral
12.49
2.68%
11.2%
Torsion
29.22
5.33%
11.8%
Table4:BucketSeat4ModalAnalysistestResults
Modeshape
Frequency(Hz)
Damping
Mode
Participation
Fore/aft
6.33
5.13%
2.5%
Fore/aft
12.15
4.19%
17.1%
LateralwithSomeFore/aft
14.22
1.47%
2.6%
Lateral
17.60
2.94%
50.9%
Torsion
31.64
3.66%
11.6%
BaseVertBackLatBending
36.57
4.05%
15.4%
RESONANTIMPACTTESTING–Whenacomplete
modalmodeisnotrequired,
resonanceimpact
analysis
is
usedto
determine
thelocation
of
seat
system
resonances.
This
method
involved
recording
the
frequencyresponse
functionoftheseatbackwhenexcitedbyanimpactfromamodalhammer.
Thehammerhadaforcetransduceratthetiptorecordtheinputforce,
while
accelerometerswere
attached
to
the
seat
back
to
measure
the
response.Theseatsystemswereimpactedatthetopleftcornerofthe
seat
backandthe
responses,
lateral
andfore/aft,
werecollected
at
top
centeroftheseat
back.The
responsewasmeasuredfrom0to
200Hzwith
800spectrallines.Thisresultedina25Hzresolution.Therewasa
10%exponential
windowplacedontheoutputandtwenty
averageswereused
togeneratethefrequency
responsefunction.The
impact
testing
results
are
detailed
in
Table
5.
Whenmorn
than
one
value
is
given
for
a
particularresonance,
thereareresonancesatmorethanonefrequency.
Table5:ResonantImpactResults
SampleLateralFore/Aft
Freq(Hz)
Coherence
Freq(Hz)
Coherence
11.75,14.00,
0.985,
BuckerSeat1
11.75,14.25
0.990,0.954
0.989,
15.00
0.994
BuckerSeat2
16.2519.75
0.992,0.996
16.25,20.00
0.997,
0.997
BuckerSeat3
12.50
0.994
11.75
0.992
BuckerSeat4
11.50,
0.982,0.989,
11.50,14.25
0.985,
14.25,17.25
0.981
0.992
TESTRESULTANALYSIS
The
frequency
responsefunctions
generated
by
resonance
impact
testingprovidethefore/aftandlateralresonantfrequenciesofthe
seating
system.Duetothelowlevel
ofexcitation
provided
bythe
impact
hammer,thismethodoftestingdoesnotalwaysexciteeveryresonance
effectively.Whenlooking
at
BucketSeat3there
wasasignificant
fore/aft
resonanceobserved
inthe10-11Hzrangefrombothmodalandshakertableanalysisthat
resonanceimpact
testing
could
not
differentiate
from
the
11.75
Hz
resonance.
Theextent
to
whichaparticular
seat
is
non-linear
cancauseimpact
testing
resonant
frequencies
to
be
slightly
different
than
resonant
frequenciescalculatedfromtestingthatprovidesexcitationlevels.
ThischaracteristicwasobservedinBuckerSeat2.Themodalanalysis
indicated
themainfore/aft
resonancetobe16.94Hzandthemainlateral
resonancetobeat19.38Hzwhileresonantimpactanalysisplacedthese
modesat16.25Hzand19.75Hzrespectively.
Theresonantimpacttestingmethodisofvaluewhenanapproximate
seatsystemfrequencyresponseneedstobedeterminedquickly.When
multiple
design
iterations
are
being
compared,impact
analysis
proves
to
beanexcellenttoolforrankingthefrequencyresponsecharacteristics
ofthe
designs.
Themethod’slimitations
in
providing
adequate
excitation
for
all
modesandadetailed
modelareoffset
bythe
speedwith
whichthemeasurementscanbetaken.
Whenafull
modal
analysis
is
performedon
aseating
system
significant
information
about
the
overall
structural
dynamicproperties
canbeascertainedinadditiontothefrequenciesatwhichtheseat
resonates.Theanalysiscanbeusedtomodelthestructureandprovide
datato
indicate
whatstructural
modifications
maybemadetoimprove
the
frequency
responsecharacteristics
of
theseatsystem.Modalanalysis
is
muchmorecomplicated
thanresonant
impact
testing
andis
usedonlywhen
structural
modifications
areneeded,orFEAmodelsneedto
becorrelated.
Modalanalysis
details
the
relative
importance
of
various
seat
modes
inthedynamicmodelmosteffectively.ImpactanalysisonBucketSeat
4revealedresonancesat11.5Hz,14.25Hz,and17.25Hz,butprovidedlimitedinformationtotheimportanceofeachresonance.ThemodalanalysisofBucketSeat4illustratedtheimportanceofeachmode.Alateralmodeat17.60Hzwas50.9%oftheresponse,afore/aftmodeat
12.15Hzwas17.1%fortheresponse,andlateralmode14.22Hzwas2.6%oftheresponse.
Whilemodalanalysisprovidesdetailedinformationaboutaseat’sfrequencyresponsecharacteristics,itgeneratesthisinformationby
uniformlyexcitingtheseat
system
with
abroadbandburst
randomsignal.This
isanexcellent
methodforexcitingall
themodesinthe
seat,butis
notrepresentative
oftheinputspectrumthatavehicleprovides.Itisimportanttohave
themainseatresonancesatfrequencies
whichthe
vehicle
doesnotexcite,
sotheirimpactcan
beminimized.Bucket
Seat4hada
mainlateralmode
at17.60Hzandaminorlateral
modeat
14.22
Hz,butthe
simulation
road
loadtestingonlyexcitedtheminorlateralresonance.
ShakertabletestingistoolusedbytheOEM
’sandsuppliersto
subjectspecimenstosqueak,rattleanddurabilitytesting.Aseatmay
besubjectedtothousands
ofsimulatedmiles
orusedto
inputsinesweep
inputs
toassist
indetermining
thesourceof
eachsqueakandrattle
issue.
Unoccupiedseat
shakeoften
causessqueakandrattle
issues
in
theseating
system.
Whenthe
resonant
frequency
of
a
seat
is
below
16
Hz
the
probabilityofin-vehiclesqueaksandrattlesincreases.
Thefirstmethodoftestingwassubjectingtheseatstosinusoidal
vertical,
andlongitudinal
inputs.The
inputs
weresimilar
tothose
used
forcurrent
testing
specifications.Acceleration
input
levels
are
very
importantwhenperformingsinesweeptests.Iftheaccelerationlevels
aretoo
high
it
will
not
accurately
represent
acceleration
levels
similar
tothoseseenontheroad.Tables6through8detailthesinesweep
testing.
Thevertical
input
to
the
shaker
table
wasfrom2to
20Hz.The
dataforeachinputwasanalyzed
todetermine
correlation
betweenvertical
inputandlateraloutput,verticalinputandfore/aftoutput,lateral
inputandlateraloutput,fore/aftinputandfore/aftoutput.Bucket
seat1,3and4hadsimilarresonantfrequencycharacteristicsinthe
fore/aft
direction
whichwasnotrevealed
during
thesine
sweeptesting.
Theresonantfrequencywastypicallylowerwhenanalyzingthedatafrom
lateralinputlateraloutputandfore/aftinputandfore/aftoutput.
During
the
sine
sweep
evaluation
the
start
and
stop
frequency
and
accelerationamplitudesarerecorded.ThesevaluesarecomparedtothevehicleASDplots.
Table6:VerticalSineSweepResults
Sample
Lateral(Hz)
Fore/Aft(Hz)
Bucketseat1
13.00
13.50
Bucketseat2
18.50
18.00
Bucketseat3
11.50
10.00
Bucketseat4
13.50
9.00
Table7:LateralSineSweepResults
Sample
Lateral(Hz)
Fore/Aft(Hz)
Bucketseat1
13.50
13.00
Bucketseat2
18.50
16.50
Bucketseat3
10.00
11.00
Bucketseat411.5011.50
Table8:LongitudinalSineSweepResults
Sample
Lateral(Hz)
Fore/Aft(Hz)
Bucketseat1
13.50
13.50
Bucketseat2
16.50
11.50
Bucketseat3
11.00
9.50
Bucketsea
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论