




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
使用数学归纳法证明容斥原理在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和=A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。(A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C)。例如:一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。为15+12-4=23。容斥原理怎么证明首先说明一点,数学归纳法原理是自然数的公理之一.
所以关于自然数的命题基本上都有数学归纳法背景.
常用的"依此类推","..."这样的写法本质上也是数学归纳法的简略形式.
要在"形式上"不用数学归纳法证明容斥原理,可以用二项式定理.
设A[1],A[2],...,A[n]是n个集合,用|S|表示集合S的元素个数,C(m,k)表示m中选k的组合数.
证明容斥原理:|A[1]∪A[2]∪...∪A[n]|=∑{1≤i≤n}|A[i]|-∑{1≤i<j≤n}|A[i]∩A[j]|
+∑{1≤i<j<k≤n}|A[i]∩A[j]∩A[k]|-...+(-1)^(n-1)·|A[1]∩A[2]∩...∩A[n]|.
对任意x∈A[1]∪A[2]∪...∪A[n],设A[1],A[2],...,A[n]中恰有m个集合包含x.
A[i]∩A[j]包含x当且仅当A[i]与A[j]都包含x.
因此在A[1],A[2],...,A[n]的两两之交中恰有C(m,2)个交集包含x.
在三三之交中恰有C(m,3)个集合包含x,依此类推.
可知在右端的和式中,x被计数的次数为C(m,1)-C(m,2)+C(m,3)-...+(-1)^(m-1).
而由二项式定理,有0=(1-1)^m=1-C(m,1)+C(m,2)-C(m,3)+...+(-1)^m.
即C(m,1)-C(m,2)+C(m,3)-...+(-1)^(m-1)=1.
A[1]∪A[2]∪...∪A[n]中的任意元素,在右端和式中恰好被计数1次.
即证明了容斥原理.公式两个集合的容斥关系公式:A∪B=|A∪B|=|A|+|B|-|A∩B|(∩:重合的部分)图1三个集合的容斥关系公式:|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|B∩C|-|C∩A|+|A∩B∩C|详细推理如下:1、等式右边改造={[(A+B-A∩B)+C-B∩C]-C∩A}+A∩B∩C2、维恩图分块标记如右图图1:1245构成A,2356构成B,4567构成C3、等式右边()里指的是下图的1+2+3+4+5+6六部分:那么A∪B∪C还缺部分7。4、等式右边[]号里+C(4+5+6+7)后,相当于A∪B∪C多加了4+5+6三部分,减去B∩C(即5+6两部分)后,还多加了部分4。5、等式右边{}里减去C∩A(即4+5两部分)后,A∪B∪C又多减了部分5,则加上A∩B∩C(即5)刚好是A∪B∪C。严格证明举例例1(小学奥数题)某校六⑴班有学生45人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?分析:参加足球队的人数25人为A类元素,参加排球队人数22人为B类元素,参加游泳队的人数24人为C类元素,既是A类又是B类的为足球排球都参加的12人,既是B类又C类的为足球游泳都参加的9人,既是C类又是A类的为排球游泳都参加的8人,三项都参加的是A类B类C类的总和设为X。注意:这个题说的每人都参加了体育训练队,所以这个班的总人数即为A类B类和C类的总和。答案:25+22+24-12-9-8+X=45,解得X=3
例2(高中题)在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。求的是“A类或B类元素个数”。我们还不能直接计算,必须先求出所需条件。1000÷3=333……1,能被3整除的数有333个(想一想,这是为什么?)同理,可以求出其他的条件。例3(高中题)分母是1001的最简分数一共有多少个?分析:这一题实际上就是找分子中不能与1001进行约分的数。由于1001=7×11×13,所以就是找不能被7,11,13整除的数。解答:1~1001中,有7的倍数1001/7=143(个);有11的倍数1001/11=91(个),有13的倍数1001/13=77(个);有7*11=77;77是11的倍数1001/77=13(个),有7*13=91;91是13的倍数;1001/91=11(个),有11*13=143;143是13的倍数1001/143=7(个).有1001的倍数1个。由容斥原理知:在1~1001中,能被7或11或13整除的数有(143+91+77)-(13+11+7)+1=281(个),从而不能被7、11或13整除的数有1001-281=720(个).也就是说,分母为1001的最简分数有720个。例4(小学奥数题)某个班的全体学生在进行了短跑、游泳、投掷三个项目的测试后,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一项达到了优秀,达到了优秀的这部分学生情况如下表:短跑游泳投掷短跑游泳短跑投掷游泳投掷短跑游泳投掷1718156652求这个班的学生共有多少人?分析:这个班的学生数,应包括达到优秀和没有达到优秀的。4+17+18+15-6-6-5+2=39(人)例5(小学奥数题)在一根长的木棍上有三种刻度线,第一种刻度线将木棍分成10等份,第二种将木棍分成12等份,第三种将木棍分成15等份。如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?分析:很显然,要计算木棍被锯成多少段,只需要计算出木棍上共有多少条不同的刻度线,在此基础上加1就是段数了。若按将木棍分成10等份的刻度线锯开,木棍有9条刻度线。在此木棍上加上将木棍分成12等份的11条刻度线,显然刻度线有重复的,如5/10和6/12都是1/2。同样再加上将木棍分成15等份的刻度线,也是如此。所以,我们应该按容斥原理的方法来解决此问题。用容斥原理的那一个呢?想一想,被计数的事物有那几类?每一类的元素个数是多少?解答解一:[10,12,15]=60,设木棍60厘米60÷10=6厘米,60÷12=5厘米,60÷15=4(厘米10等分的为第一种刻度线,共10-1=9(条)12等分的为第二种刻度线,共12-1=11(条)15等分的为第三种刻度线,过15-1=14(条)第一种与第二种刻度线重合的[6,5]=30,60÷30-1=2-1=1(条)第一种与第三种刻度线重合的[6,4]=12,60÷12-1=5-1=4(条)第二种与第三种刻度线重合的[5,4]=20,60÷20-1=3-1=2(条)三种刻度线重合的没有,[6、5、4]=60因此,共有刻度线9+11+14-1-4-2=27条,木棍总共被锯成27+1=28段。解二:总长看成单位1分别分成10、12、15段。1/10与1/12的最小公倍数1/2,1/10与1/15的最小公倍数1/5,1/12与1/15的最小公倍数1/3,1/10,1/12和1/15的最小公倍数为1,有10+12+15-(2+5+3)+1=28解三:10、12、15的最小公倍数是60,假设木棍就是长60,1、那么,分成10等份的每份6,刻度就是0,6,12,18,24,30,36,42,48,54,602、分成12等分的每份就是5,0,5,1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年戏曲艺术与表演技巧考试试题及答案
- 2025年摄影艺术专业考试试题及答案
- 2025年物流管理岗位考试试卷及答案
- 2025年商务英语翻译考试试题及答案
- 2025年城市规划师资格考试试卷及答案
- 2025年电商运营与市场推广考试卷及答案
- 2025年公共卫生与预防医学考试题及答案
- 2025年护理学专业毕业考试试卷及答案
- 2025年酒店管理专业考试题目及答案
- 数字化在小学教育的应用
- 饲料学第五章粗饲料课件
- 入团志愿书(2016版本)(可编辑打印标准A4) (1)
- 一致行动人协议书模板参考
- Q∕GDW 12127-2021 低压开关柜技术规范
- 思南塘头字牌僰的传承
- 语文老师家长会PPT
- 医院标识工作总结
- ERP系统标准流程图
- 国家开放大学《会计学概论》章节测试参考答案
- 4、支气管哮喘抢救流程
- 监控系统工程量清单2
评论
0/150
提交评论