![2022年湖南省长沙市雅礼集团达标名校中考联考数学试卷含解析_第1页](http://file4.renrendoc.com/view/dfa395cdb5c2e85f3bc49b913babed83/dfa395cdb5c2e85f3bc49b913babed831.gif)
![2022年湖南省长沙市雅礼集团达标名校中考联考数学试卷含解析_第2页](http://file4.renrendoc.com/view/dfa395cdb5c2e85f3bc49b913babed83/dfa395cdb5c2e85f3bc49b913babed832.gif)
![2022年湖南省长沙市雅礼集团达标名校中考联考数学试卷含解析_第3页](http://file4.renrendoc.com/view/dfa395cdb5c2e85f3bc49b913babed83/dfa395cdb5c2e85f3bc49b913babed833.gif)
![2022年湖南省长沙市雅礼集团达标名校中考联考数学试卷含解析_第4页](http://file4.renrendoc.com/view/dfa395cdb5c2e85f3bc49b913babed83/dfa395cdb5c2e85f3bc49b913babed834.gif)
![2022年湖南省长沙市雅礼集团达标名校中考联考数学试卷含解析_第5页](http://file4.renrendoc.com/view/dfa395cdb5c2e85f3bc49b913babed83/dfa395cdb5c2e85f3bc49b913babed835.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖南省长沙市雅礼集团达标名校中考联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为()。A.70° B.65° C.50° D.25°2.函数的图像位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.=()A.±4 B.4 C.±2 D.24.若α,β是一元二次方程3x2+2x-9=0的两根,则的值是(
).A. B.- C.- D.5.在,,0,1这四个数中,最小的数是A. B. C.0 D.16.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是()A.10 B. C. D.157.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.48.如图所示图形中,不是正方体的展开图的是()A. B.C. D.9.一个数和它的倒数相等,则这个数是()A.1 B.0 C.±1 D.±1和010.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.cm B.cm C.cm D.cm二、填空题(共7小题,每小题3分,满分21分)11.在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m﹣1,7),若线段AB与直线y=﹣2x﹣1相交,则m的取值范围为__.12.若不等式组的解集为,则________.13.点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a_______b(填“>”或“<”或“=”).14.如图,在△ABC中,∠ABC=90°,AB=CB,F为AB延长线上一点,点E在BC上,且AE=CF,若∠CAE=32°,则∠ACF的度数为__________°.15.直线y=﹣x+1分别交x轴,y轴于A、B两点,则△AOB的面积等于___.16.在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_____.17.若代数式有意义,则x的取值范围是__.三、解答题(共7小题,满分69分)18.(10分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.求证:△AED≌△EBC;当AB=6时,求CD的长.19.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.20.(8分)已知动点P以每秒2
cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6
cm,试回答下列问题:(1)图(1)中的BC长是多少?(2)图(2)中的a是多少?(3)图(1)中的图形面积是多少?(4)图(2)中的b是多少?21.(10分)在如图的正方形网格中,每一个小正方形的边长均为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系,写出点B的坐标;(2)把△ABC绕坐标原点O顺时针旋转90°得到△A1B1C1,画出△A1B1C1,写出点B1的坐标;(3)以坐标原点O为位似中心,相似比为2,把△A1B1C1放大为原来的2倍,得到△A2B2C2画出△A2B2C2,使它与△AB1C1在位似中心的同侧;请在x轴上求作一点P,使△PBB1的周长最小,并写出点P的坐标.22.(10分)23.(12分)问题探究(1)如图1,△ABC和△DEC均为等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,连接AD、BE,求的值;(2)如图2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,过点A作AM⊥AB,点P是射线AM上一动点,连接CP,做CQ⊥CP交线段AB于点Q,连接PQ,求PQ的最小值;(3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值.图324.(14分)先化简,再求值:,其中x=,y=.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【详解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故选:C.【点睛】此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.2、D【解析】
根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【详解】解:函数的图象位于第四象限.故选:D.【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.3、B【解析】
表示16的算术平方根,为正数,再根据二次根式的性质化简.【详解】解:,故选B.【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.4、C【解析】分析:根据根与系数的关系可得出α+β=-、αβ=-3,将其代入=中即可求出结论.详解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴===.故选C.点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.5、A【解析】【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.【详解】由正数大于零,零大于负数,得,最小的数是,故选A.【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.6、C【解析】
A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积.【详解】A,C之间的距离为6,2017÷6=336…1,故点P离x轴的距离与点B离x轴的距离相同,在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,∴m=6,2020﹣2017=3,故点Q与点P的水平距离为3,∵解得k=6,双曲线1+3=4,即点Q离x轴的距离为,∴∵四边形PDEQ的面积是.故选:C.【点睛】考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.7、D【解析】
①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD.∴S△DAC:S△ABC.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D.8、C【解析】
由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.【详解】解:A、B、D都是正方体的展开图,故选项错误;C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.故选C.【点睛】此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题9、C【解析】
根据倒数的定义即可求解.【详解】的倒数等于它本身,故符合题意.
故选:.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10、B【解析】试题解析:∵菱形ABCD的对角线根据勾股定理,设菱形的高为h,则菱形的面积即解得即菱形的高为cm.故选B.二、填空题(共7小题,每小题3分,满分21分)11、﹣4≤m≤﹣1【解析】
先求出直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),再分类讨论:当点B在点A的右侧,则m≤﹣4≤3m﹣1,当点B在点A的左侧,则3m﹣1≤﹣4≤m,然后分别解关于m的不等式组即可.【详解】解:当y=7时,﹣2x﹣1=7,解得x=﹣4,所以直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),当点B在点A的右侧,则m≤﹣4≤3m﹣1,无解;当点B在点A的左侧,则3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范围为﹣4≤m≤﹣1,故答案为﹣4≤m≤﹣1.【点睛】本题考查了一次函数图象上点的坐标特征,根据直线y=﹣2x﹣1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键.12、-1【解析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.13、<【解析】把点(-1,a)、(-2,b)分别代入抛物线,则有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案为<.14、58【解析】
根据HL证明Rt△CBF≌Rt△ABE,推出∠FCB=∠EAB,求出∠CAB=∠ACB=45°,求出∠BCF=∠BAE=13°,即可求出答案.【详解】解:∵∠ABC=90°,∴∠ABE=∠CBF=90°,在Rt△CBF和Rt△ABE中∴Rt△CBF≌Rt△ABE(HL),∴∠FCB=∠EAB,∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB﹣∠CAE=45°﹣32°=13°,∴∠BCF=∠BAE=13°,∴∠ACF=∠BCF+∠ACB=45°+13°=58°故答案为58【点睛】本题考查了全等三角形的性质和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.15、.【解析】
先求得直线y=﹣x+1与x轴,y轴的交点坐标,再根据三角形的面积公式求得△AOB的面积即可.【详解】∵直线y=﹣x+1分别交x轴、y轴于A、B两点,∴A、B点的坐标分别为(1,0)、(0,1),S△AOB=OA•OB=×1×1=,故答案为.【点睛】本题考查了直线与坐标轴的交点坐标及三角形的面积公式,正确求得直线y=﹣x+1与x轴、y轴的交点坐标是解决问题的关键.16、【解析】
先画树状图展示所有36种等可能的结果数,再找出两次摸到一个红球和一个黄球的结果数,然后根据概率公式求解.【详解】画树状图如下:由树状图可知,共有36种等可能结果,其中两次摸到一个红球和一个黄球的结果数为12,所以两次摸到一个红球和一个黄球的概率为,故答案为.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17、x3【解析】
由代数式有意义,得
x-30,
解得x3,
故答案为:x3.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)CD=3【解析】分析:(1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD=AB=3点睛:本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19、(1)证明见解析(2)【解析】分析:(1)由已知条件易得BE=DF且BE∥DF,从而可得四边BFDE是平行四边形,结合∠EDB=90°即可得到四边形BFDE是矩形;(2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,结合BE=DF可得BE=5,由此可得AB=8,结合BF=DE=4即可求得tan∠BAF=.详解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)在Rt△BCF中,由勾股定理,得AD=,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.∵AF平分∠DAB∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DF=AD=5,∵四边形BFDE是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴tan∠BAF=.点睛:(1)熟悉平行四边形的性质和矩形的判定方法是解答第1小题的关键;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,进而推得DF=AD=5是解答第2小题的关键.20、(1)8cm(2)24cm2(3)60cm2(4)17s【解析】
(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;(3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案,(4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.【详解】(1)由图象知,当t由0增大到4时,点P由BC,∴BC==4×2=8(㎝);(2)a=S△ABC=×6×8=24(㎝2);(3)同理,由图象知CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝∴图1中的图象面积为6×14-4×6=60㎝2;(4)图1中的多边形的周长为(14+6)×2=40㎝b=(40-6)÷2=17秒.21、(1)(﹣4,1);(2)(1,4);(3)见解析;(4)P(﹣3,0).【解析】
(1)先建立平面直角坐标系,再确定B的坐标;(2)根据旋转要求画出△A1B1C1,再写出点B1的坐标;(3)根据位似的要求,作出△A2B2C2;(4)作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求.【详解】解:(1)如图所示,点B的坐标为(﹣4,1);(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);(3)如图,△A2B2C2即为所求;(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).【点睛】本题考核知识点:位似,轴对称,旋转.解题关键点:理解位似,轴对称,旋转的意义.22、﹣2<x<2.【解析】
分别解不等式,进而得出不等式组的解集.【详解】解①得:x<2解②得:x>﹣2.故不等式组的解集为:﹣2<x<2.【点睛】本题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题的关键.23、(1);(2);(3)+.【解析】
(1)由等腰直角三角形的性质可得BC=3,CE=,∠ACB=∠DCE=45°,可证△ACD∽△BCE,可得=;(2)由题意可证点A,点Q,点C,点P四点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化妆品销售合同书年
- 机械设备购销合同协议书范本
- 房屋建筑工程保修合同书范本
- 通信工程承包合同模板
- 苏州室内装修合同范本
- 铸件加工合同范本
- 销售员合同协议书
- 数据产业能否促进经济快速发展
- 课程游戏化背景下师幼互动模式的创新研究
- 档案叙事与共情:理论阐释与实证分析
- 复工复产消防安全培训
- 城市道路交通安全评价标准 DG-TJ08-2407-2022
- 统编版高中政治选择性必修2《法律与生活》知识点复习提纲详细版
- 急腹症的诊断思路
- 培训机构安全隐患排查记录(带附件)
- 2024小说推文行业白皮书
- 研究性成果及创新性成果怎么写(通用6篇)
- 特殊感染手术管理考试试题及答案
- 旅馆治安管理制度及突发事件应急方案三篇
- 土地增值税清算底稿中税协版
- 小区绿化养护方案及报价(三篇)
评论
0/150
提交评论