2023届重庆九龙坡区高数学高二下期末检测模拟试题含解析_第1页
2023届重庆九龙坡区高数学高二下期末检测模拟试题含解析_第2页
2023届重庆九龙坡区高数学高二下期末检测模拟试题含解析_第3页
2023届重庆九龙坡区高数学高二下期末检测模拟试题含解析_第4页
2023届重庆九龙坡区高数学高二下期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若关于x的方程|x4-x3|=ax在R上存在4个不同的实根,则实数a的取值范围为()A. B. C. D.2.函数在区间上的最大值为()A.2 B. C. D.3.已知在R上是奇函数,且A.-2 B.2 C.-98 D.984.ΔABC的内角A、B、C的对边分别为a、b、c,已知,则()A. B. C. D.5.在二项式的展开式中,的系数为()A.﹣80 B.﹣40 C.40 D.806.已知函数是奇函数,当时,,当时,,则的解集时()A. B.C. D.7.推理“①圆内接四边形的对角和为;②等腰梯形是圆内接四边形;③”中的小前提是()A.① B.② C.③ D.①和②8.已知,则下列不等式正确的是()A. B.C. D.9.在中,,则的形状为()A.正三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形10.在的展开式中,项的系数为()A. B.40 C. D.8011.若,且m,n,,则()A. B. C. D.12.函数的单调递增区间是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数是定义在上的周期为2的偶函数,当,时,,则____.14.函数是奇函数的导函数,,当时,,则使得成立的x的取值范围是________.15.已知为虚数单位,则复数的虚部为__________.16.设某弹簧的弹力与伸长量间的关系为,将该弹簧由平衡位置拉长,则弹力所做的功为_______焦.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数有两个不同的零点,求实数的取值范围;(2)若在上恒成立,求实数的取值范围.18.(12分)设,.(Ⅰ)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;(Ⅱ)如果对于任意的都有f(s)≥g(t)成立,求实数a的取值范围.19.(12分)如图,是圆锥的顶点,是底面圆的一条直径,是一条半径.且,已知该圆锥的侧面展开图是一个面积为的半圆面.(1)求该圆锥的体积:(2)求异面直线与所成角的大小.20.(12分)已知知x为正实数,n为正偶数,在的展开式中,(1)若前3项的系数依次成等差数列,求n的值及展开式中的有理项;(2)求奇数项的二项式系数的和与偶数项的二项式系数的和,并比较它们的大小.21.(12分)已知函数.(1)当时,求函数的极大值点;(2)当时,不等式恒成立,求整数的最小值.22.(10分)在平面直角坐标系中,已知,动点满足,记动点的轨迹为.(1)求的方程;(2)若直线与交于两点,且,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据方程和函数的关系转化为函数,利用参数分离法,构造函数,求函数的导数,研究函数的单调性和极值,利用数形结合进行求解即可.【详解】当x=0时,0=0,∴0为方程的一个根.当x>0时,方程|x4﹣x3|=ax等价为a=|x3﹣x2|,令f(x)=x3﹣x2,f′(x)=3x2﹣2x,由f′(x)<0得0<x<,由f′(x)>0得x<0或x>,∴f(x)在(0,)上递减,在上递增,又f(1)=0,∴当x=时,函数f(x)取得极小值f()=﹣,则|f(x)|取得极大值|f()|=,∴设的图象如下图所示,则由题可知当直线y=a与g(x)的图象有3个交点时0<a<,此时方程|x4﹣x3|=ax在R上存在4个不同的实根,故.故答案为:A【点睛】(1)本题主要考查函数与方程的应用,考查利用导数求函数的单调区间,考查函数的零点问题,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.(2)解答本题的关键有两点,其一是分离参数得到a=|x3﹣x2|,其二是利用导数分析函数的单调性得到函数的图像.2、D【解析】

求出导函数,利用导数确定函数的单调性,从而可确定最大值.【详解】,当时,;时,,∴已知函数在上是增函数,在上是减函数,.故选D.【点睛】本题考查用导数求函数的最值.解题时先求出函数的导函数,由导函数的正负确定函数的增减,从而确定最值,在闭区间的最值有时可能在区间的端点处取得,要注意比较.3、A【解析】∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2019)=-2.故选A4、D【解析】

边化角,再利用三角形内角和等于180°,全部换成B角,解出即可【详解】()【点睛】本题考查正弦定理解三角形,属于基础题.5、A【解析】

根据二项展开式的通项,可得,令,即可求得的系数,得到答案.【详解】由题意,二项式的展开式的通项为,令,可得,即展开式中的系数为,故选A.【点睛】本题主要考查了二项式定理的应用,其中解答中熟记二项展开式的通项是解答本题的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】

对的范围分类讨论,利用已知及函数是奇函数即可求得的表达式,解不等式即可.【详解】因为函数是奇函数,且当时,所以当,即:时,,当,即:时,可化为:,解得:.当,即:时,利用函数是奇函数,将化为:,解得:所以的解集是故选A【点睛】本题主要考查了函数的奇偶性应用,还考查了分类思想及计算能力,属于中档题.7、B【解析】

由演绎推理三段论可知,①是大前提;②是小前提;③是结论.【详解】由演绎推理三段论可知,①是大前提;②是小前提;③是结论,故选B.【点睛】本题主要考查演绎推理的一般模式.8、C【解析】

考虑到中不等号方向,先研究C,D中是否有一个正确。构造函数是增函数,可得当时,有,所以作差,,对可分类,和【详解】令,显然单调递增,所以当时,有,所以另一方面因为所以,当时,,当时,(由递增可得),∴,C正确。故选:C。【点睛】本题考查判断不等式是否成立,考查对数函数的性质。对于不等式是否成立,有时可用排除法,即用特例,说明不等式不成立,从而排除此选项,一直到只剩下一个正确选项为止。象本题中有两个选项结论几乎相反(或就是相反结论时),可考虑先判断这两个不等式中是否有一个为真。如果这两个都为假,再考虑两个选项。9、B【解析】

利用二倍角公式代入cos2=求得cosB=,进而利用余弦定理化简整理求得a2+b2=c2,根据勾股定理判断出三角形为直角三角形.【详解】因为,,所以,有.整理得,故,的形状为直角三角形.故选:B.【点睛】余弦的二倍角公式有三个,要根据不同的化简需要进行选取..在判断三角形形状的方法中,一般有,利用正余弦定理边化角,角化边,寻找关系即可10、D【解析】

通过展开二项式即得答案.【详解】在的展开式中,的系数为,故答案为D.【点睛】本题主要考查二项式定理,难度很小.11、D【解析】

根据已知条件,运用组合数的阶乘可得:,再由二项式系数的性质,可得所要求的和.【详解】则故选:D【点睛】本题考查了组合数的计算以及二项式系数的性质,属于一般题.12、C【解析】

先求得函数的定义域,然后利用导数求得函数的单调递增区间.【详解】依题意,函数的定义域为,,故当时,,所以函数的单调递增区间为,故选C.【点睛】本小题主要考查利用导数求函数的单调递增区间,考查导数的运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

依题意能得到f()=f(),代入解析式即可求解.【详解】依题意得f(﹣x)=f(x)且f(x+2)=f(x),∴f()=f()=f(2)=f()2,故答案为:.【点睛】本题考查了函数的奇偶性、周期性的应用,属于基础题.14、【解析】

根据条件构造函数,其导数为,可知函数偶函数在时是减函数,结合函数零点即可求解.【详解】构造函数,其导数为,当时,,所以函数单调递减,又,所以当时,,即,因为为奇函数,所以为偶函数,所以当时,的解为,即的解为,综上x的取值范围是.【点睛】本题主要考查了抽象函数,导数,函数的单调性,函数的奇偶性,函数的零点,属于难题.15、【解析】

先化简复数,再利用复数的概念求解.【详解】因为复数,所以复数的虚部为.故答案为:【点睛】本题主要考查复数的概念及运算,还考查了理解辨析和运算求解的能力,属于基础题.16、【解析】

用力沿着力的方向移动,则所做的功为,代入数据求得结果.【详解】弹力所做的功为:焦本题正确结果:【点睛】本题考查函数值的求解,关键是能够明确弹力做功的公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)先对求导,然后分别讨论和时的情况,从而得到的取值范围;(2)可令,再求导,就和两种情况再分别讨论恒成立问题即可得到答案.【详解】(1)①当时,恒成立,故在上递增,最多一个零点,不合题意;②当时,,,在上递增,在上递减,且时,,时,故要有两个零点,只需,解得:,综合①、②可知,的范围是:.(2)令,①当,恒成立,在上递增,,符合题意;②当时,在上递增,在上递增,又,若,即时,恒成立,同①,符合题意,若,即时,存在,使,时,,时,,在递减,在上递增,而,故不满足恒成立,综上所述,的范围是:.【点睛】本题主要考查利用导函数求解零点中含参问题,恒成立中含参问题,意在考查学生的转化能力,对学生的分类讨论的思想要求较高,难度较大.18、(Ⅰ)M=4;(Ⅱ)[1,+∞).【解析】分析:(I)存在x1、x2∈[0,2],使得g(x1)﹣g(x2)≥M成立等价于g(x)max﹣g(x)min≥M;(II)对于任意的s、t∈[,2],都有f(s)≥g(t)成立等价于f(x)≥g(x)max,进一步利用分离参数法,即可求得实数a的取值范围;详解:(I)存在x1、x2∈[0,2],使得g(x1)﹣g(x2)≥M成立等价于g(x)max﹣g(x)min≥M∵g(x)=x3﹣x2﹣3,∴∴g(x)在(0,)上单调递减,在(,2)上单调递增∴g(x)min=g()=﹣,g(x)max=g(2)=1∴g(x)max﹣g(x)min=∴满足的最大整数M为4;(II)对于任意的s、t∈[,2],都有f(s)≥g(t)成立等价于f(x)≥g(x)max.由(I)知,在[,2]上,g(x)max=g(2)=1∴在[,2]上,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x2lnx恒成立记h(x)=x﹣x2lnx,则h′(x)=1﹣2xlnx﹣x且h′(1)=0∴当时,h′(x)>0;当1<x<2时,h′(x)<0∴函数h(x)在(,1)上单调递增,在(1,2)上单调递减,∴h(x)max=h(1)=1∴a≥1点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.19、(1)(2)【解析】

(1)运用圆锥的体积公式求解;(2)建立空间直角坐标系,运用空间向量的夹角公式求解.【详解】解:(1)设该圆锥的母线长为,底面圆半径为,高为,由题意,∴,底面圆周长,∴,∴,因此,该圆锥的体积;(2)如图所示,取弧的中点,则,因为垂直于底面,所以、、两两垂直以为轴,为轴,为轴建立空间直角坐标系,计算得,,,,所以,,设与所成角的大小为,则,所以,即异面直线与所成角的大小为.【点睛】本题考查圆锥的体积和异面直线所成的角,属于基础题.20、(1),有理项有三项,分别为:;(2)128,128,相等【解析】

(1)首先找出展开式的前3项,然后利用等差数列的性质即可列出等式,求出n,于是求出通项,再得到有理项;(2)分别计算偶数项和奇数项的二项式系数和,比较大小即可.【详解】(1)二项展开式的前三项的系数分别为:,而前三项构成等差数列,故,解得或(舍去);所以,当时,为有理项,又且,所以符合要求;故有理项有三项,分别为:;(2)奇数项的二项式系数和为:,偶数项的二项式系数和为:,故奇数项的二项式系数的和等于偶数项的二项式系数的和.【点睛】本题主要考查二项式定理的通项,二项式系数和,注意二项式系数和与系数和的区别,意在考查学生的计算能力和分析能力,难度中等.21、(1)是函数的极大值点;(2)整数的最小值为.【解析】

当时,,令,则,利用导数性质能求出是函数的极大值点;由题意得,即,再证明当时,不等式成立,即证,由此能求出整数的最小值为.【详解】解:(1)当时,,令,则,所以当时,,即在内为减函数,且,所以当时,,当时,,所以函数在内是增函数,在内是减函数,综上所述,是函数的极大值点.(2)由题意得,即,现证明当时,不等式恒成立,即,即证,令,则,当时,,当时,,所以在内单调递增,在内单调递减,所以的最大值为,所以当时,不等式恒成立,综上所述,整数的最小值为.【点睛】本题考查导数在研究函数单调性、极值和最值中的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论