2023届云南省昭通市三中数学高二下期末学业水平测试模拟试题含解析_第1页
2023届云南省昭通市三中数学高二下期末学业水平测试模拟试题含解析_第2页
2023届云南省昭通市三中数学高二下期末学业水平测试模拟试题含解析_第3页
2023届云南省昭通市三中数学高二下期末学业水平测试模拟试题含解析_第4页
2023届云南省昭通市三中数学高二下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在掷一枚图钉的随机试验中,令,若随机变量X的分布列如下:010.3则()A.0.21 B.0.3 C.0.5 D.0.72.已知圆与双曲线的渐近线相切,则的离心率为()A. B. C. D.3.如图,在中,.是的外心,于,于,于,则等于()A. B.C. D.4.若双曲线的离心率大于2,则该双曲线的虚轴长的取值范围是()A. B. C. D.5.已知函数的图象关于点对称,则在上的值域为()A. B. C. D.6.已知曲线在点处切线的倾斜角为,则等于()A.2B.-2C.3D.-17.已知函数的导函数为,则()A. B. C. D.8.已知函数的定义域为,且函数的图象关于轴对称,函数的图象关于原点对称,则()A. B. C. D.9.已知幂函数的图象关于y轴对称,且在上是减函数,则()A.- B.1或2 C.1 D.210.在三棱锥中,,,,则三棱锥外接球的表面积为()A. B. C. D.11.已知某产品的次品率为4%,其合格品中75%为一级品,则任选一件为一级品的概率为()A.75% B.96% C.72% D.78.125%12.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与直线互相垂直,则__________.14.欧拉在1748年给出的著名公式(欧拉公式)是数学中最卓越的公式之一,其中,底数=2.71828…,根据欧拉公式,任何一个复数,都可以表示成的形式,我们把这种形式叫做复数的指数形式,若复数,则复数在复平面内对应的点在第________象限.15.若函数的反函数为,且,则的值为________16.已知,,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,侧面底面ABCD,底面ABCD为直角梯形,,,,,E,F分别为AD,PC的中点.Ⅰ求证:平面BEF;Ⅱ若,求二面角的余弦值.18.(12分)在平面直角坐标系中,曲线:的参数方程是,(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)分别写出的极坐标方程和的直角坐标方程;(2)若射线的极坐标方程,且分别交曲线、于,两点,求.19.(12分)一次数学考试有4道填空题,共20分,每道题完全答对得5分,否则得0分.在试卷命题时,设计第一道题使考生都能完全答对,后三道题能得出正确答案的概率分别为p、、,且每题答对与否相互独立.(1)当时,求考生填空题得满分的概率;(2)若考生填空题得10分与得15分的概率相等,求的p值.20.(12分)某保险公司决定每月给推销员确定个具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图.(1)①根据图中数据,求出月销售额在小组内的频率.②根据直方图估计,月销售目标定为多少万元时,能够使70%的推销员完成任务?并说明理由.(2)该公司决定从月销售额为和的两个小组中,选取2位推销员介绍销售经验,求选出的推销员来自同一个小组的概率.21.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(I)求曲线的直角坐标方程;(II)求直线与曲线交点的直角坐标.22.(10分)毕业季有位好友欲合影留念,现排成一排,如果:(1)、两人不排在一起,有几种排法?(2)、两人必须排在一起,有几种排法?(3)不在排头,不在排尾,有几种排法?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

先由概率和为1,求出,然后即可算出【详解】因为,所以所以故选:D【点睛】本题考查的是离散型随机变量的分布列的性质及求由分布列求期望,较简单.2、B【解析】

由题意可得双曲线的渐近线方程为,根据圆心到切线的距离等于半径,求出的关系,进而得到双曲线的离心率,得到答案.【详解】由题意,根据双曲线的渐近线方程为.根据圆的圆心到切线的距离等于半径1,可得,整理得,即,又由,则,可得即双曲线的离心率为.故选:B.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).3、D【解析】由正弦定理有,为三角形外接圆半径,所以,在中,,同理,所以,选D.4、C【解析】

根据离心率大于2得到不等式:计算得到虚轴长的范围.【详解】,,,故答案选C【点睛】本题考查了双曲线的离心率,虚轴长,意在考查学生的计算能力.5、D【解析】由题意得,函数的图象关于点对称,则,即,解得,所以,则,令,解得或,当,则,函数单调递减,当,则,函数单调递增,所以,,所以函数的值域为,故选D.点睛:本题考查了函数的基本性质的应用,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的最值,其中解答中根据函数的图象关于点对称,列出方程组,求的得值是解得关键,着重考查了学生分析问题和解答问题的能力.6、A【解析】因为,所以,由已知得,解得,故选A.7、D【解析】

求导数,将代入导函数解得【详解】将代入导函数故答案选D【点睛】本题考查了导数的计算,把握函数里面是一个常数是解题的关键.8、A【解析】分析:根据奇函数与偶函数的定义,可求得函数的解析式;根据解析式确定’的值。详解:令,则,因为为偶函数所以(1),因为为奇函数所以(2)(1)-(2)得(3),令代入得(4)由(3)、(4)联立得代入得所以所以所以选A点睛:本题考查了抽象函数解析式的求解,主要是利用方程组思想确定解析式。方法相对比较固定,需要掌握特定的技巧,属于中档题。9、C【解析】分析:由为偶数,且,即可得结果.详解:幂函数的图象关于轴对称,且在上是减函数,为偶数,且,解得,故选C.点睛:本题考查幂函数的定义、幂函数性质及其应用,意在考查综合利用所学知识解决问题的能力.10、C【解析】分析:首先通过题中的条件,得到棱锥的三组对棱相等,从而利用补体,得到相应的长方体,列式求得长方体的对角线长,从而求得外接球的半径,利用球体的表面积公式求得结果.详解:对棱相等的三棱锥可以补为长方体(各个对面的面对角线),设长方体的长、宽、高分别是,则有,三个式子相加整理可得,所以长方体的对角线长为,所以其外接球的半径,所以其外接球的表面积,故选C.点睛:该题考查的是有关几何体的外接球的体积问题,在解题的过程中,注意根据题中所给的三棱锥的特征,三组对棱相等,从而将其补体为长方体,利用长方体的外接球的直径就是该长方体的对角线,利用相应的公式求得结果.11、C【解析】

不妨设出产品是100件,求出次品数,合格品中一级品数值,然后求解概率.【详解】解:设产品有100件,次品数为:4件,合格品数是96件,合格品中一级品率为75%.则一级品数为:96×75%=72,现从这批产品中任取一件,恰好取到一级品的概率为:.故选:C.【点睛】本题考查概率的应用,设出产品数是解题的关键,注意转化思想的应用.12、B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为,故选B.点睛:(1)解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.(2)三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:由两条直线互相垂直,可知两条直线的斜率之积为-1,进而求得参数m的值。详解:斜率为直线斜率为两直线垂直,所以斜率之积为-1,即所以点睛:本题考查了两条直线垂直条件下斜率之间的关系,属于简单题。14、四【解析】

由欧拉公式求出,再由复数的乘除运算计算出,由此求出复数在复平面内对应的点在几象限.【详解】因为,所以,所以,则复数在复平面内对应的点在第四象限.【点睛】本题考查复数的基本计算以及复数的几何意义,属于简单题.15、【解析】

根据反函数的解析式,求得函数的解析式,代入即可求得的值.【详解】因为函数的反函数为,且令则所以即函数()所以故答案为:【点睛】本题考查了反函数的求法,求函数值,属于基础题.16、【解析】

先用同角三角函数平方和关系求出,再利用商关系求出,最后利用二倍角的正切公式求出的值.【详解】因为,,所以,.【点睛】本题考查了同角三角函数的平方和关系和商关系,考查了二倍角的正切公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】

(1)连接交于,并连接,,由空间几何关系可证得,利用线面平行的判断定理可得平面.(2)(法一)取中点,连,,,由二面角的定义结合几何体的特征可知为二面角的平面角,计算可得二面角的余弦值为.(法二)以为原点,、、分别为、、建立直角坐标系,则平面法向量可取:,平面的法向量,由空间向量的结论计算可得二面角的余弦值为.【详解】(1)连接交于,并连接,,,,为中点,,且,四边形为平行四边形,为中点,又为中点,,平面,平面,平面.(2)(法一)由为正方形可得,.取中点,连,,,侧面底面,且交于,,面,又,为二面角的平面角,又,,,,所以二面角的余弦值为.(法二)由题意可知面,,如图所示,以为原点,、、分别为、、建立直角坐标系,则,,,.平面法向量可取:,平面中,设法向量为,则,取,,所以二面角的余弦值为.【点睛】本题主要考查线面平行的判断定理,二面角的定义与求解,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.18、(1):,:;(2).【解析】试题分析:(1)首先写出的直角坐标方程,再根据互化公式写出极坐标方程,和的直角坐标方程,互化公式为;(2)根据图象分析出.试题解析:(1)将参数方程化为普通方程为,即,∴的极坐标方程为.将极坐标方程化为直角坐标方程为.(2)将代入整理得,解得,即.∵曲线是圆心在原点,半径为1的圆,∴射线与相交,即,即.故.19、(1);(2)【解析】

(1)设考生填空题得满分为事件A,利用相互独立事件概率乘法公式能求出考生填空题得满分的概率.(2)设考生填空题得15分为事件B,得10分为事件C,由考生填空题得10分与得15分的概率相等,利用互斥事件概率加法公式能求出.【详解】设考生填空题得满分、15分、10分为事件A、B、C(1)(2)因为,所以得【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.20、(1)①;②17,理由见解析;(2).【解析】

(1)①利用频率分布直方图能求出月销售额在,内的频率.②若的推销员能完成月销售额目标,则意味着的推销员不能完成该目标.根据频率分布直方图知,,和,两组频率之和为0.18,由此能求出月销售额目标应确定的标准.(2)根据直方图可知,销售额为,和,的频率之和为0.08,由可知待选的推销员一共有4人,设这4人分别为,,,,利用列举法能求出选定的推销员来自同一个小组的概率.【详解】解:(1)①月销售额在小组内的频率为.②若要使70%的推销员能完成月销售额目标,则意味着30%的推销员不能完成该目标.根据题图所示的频率分布直方图知,和两组的频率之和为0.18,故估计月销售额目标应定2为(万元).(2)根据直方图可知,月销售额为和的频率之和为0.08,由可知待选的推销员一共有4人.设这4人分别为,则不同的选择为,一共有6种情况,每一种情况都是等可能的,而2人来自同一组的情况有2种,所以选出的推销员来自同一个小组的概率.【点睛】本题考查频率、月销售额目标、概率的求法,考查频率分布直方图、列举法等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题.21、(I);(II).【解析】

(I)曲线C的极坐标方程为两边同乘,利用极坐标与直角坐标互化公式可得直角坐标方程.(II)将代入中,得的二次方程,解得则可求解【详解】(I)将两边同乘得,,曲线的直角坐标方程为:.(II)将代入中,得,解得,直线与曲线交点的直角坐标为.【点睛】本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程及其应用、直线与抛物线相交问题,考查的几何意义,考查了推理能力与计算能力,属于中档题.22、(1);(2);(3).【解析】

(1)利用插空法可求出排法种数;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论