版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知某几何体的三视图如图所示,则该几何体的表面积为()A.16 B.(10+)π C.4+(5+)π D.6+(5+)π2.在某项测试中,测量结果与服从正态分布,若,则()A.0.4 B.0.8 C.0.6 D.0.213.设随机变量服从正态分布,若,则()A. B. C. D.与的值有关4.如图所示,给出了样本容量均为7的A、B两组样本数据的散点图,已知A组样本数据的相关系数为r1,B组数据的相关系数为r2,则()A.r1=r2 B.r1<r2 C.r1>r2 D.无法判定5.设集合,.若,则()A. B. C. D.6.魏晋时期数学家刘徽首创割圆术,他在《九章算术》中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”.这是一种无限与有限的转化过程,比如在正数中的“…”代表无限次重复,设,则可以利用方程求得,类似地可得到正数=()A.2 B.3 C.4 D.67.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23A.2027B.49C.88.若函数为偶函数,则()A.-1 B.1 C.-1或1 D.09.若的展开式中含有项的系数为8,则()A.2 B. C. D.10.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种A.19 B.7 C.26 D.1211.在ΔABC中,∠ACB=π2,AC=BC,现将ΔABC绕BC所在直线旋转至ΔPBC,设二面角P-BC-A的大小为θ,PB与平面ABC所成角为α,PC与平面PAB所成角为β,若0<θ<π,则(A.α>θ B.β<θ C.0<α≤π412.在正方体中,过对角线的一个平面交于,交于得四边形,则下列结论正确的是()A.四边形一定为菱形B.四边形在底面内的投影不一定是正方形C.四边形所在平面不可能垂直于平面D.四边形不可能为梯形二、填空题:本题共4小题,每小题5分,共20分。13.展开式中含有的系数为________14.已知曲线与轴只有一个交点,则_____.15.求曲线在点处的切线方程是________.16.椭圆的焦点为、,为椭圆上的一点,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当时,求在上的最大值和最小值:(2)若,恒成立,求a的取值范围.18.(12分)如图,在四棱锥中,平面,,∥,,.为的中点,点在上,且.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.19.(12分)如图直线经过圆上的点,OA=OB,CA=CB,圆交直线于点、,其中在线段上,连接、.(1)证明:直线是圆的切线;(2)若,圆的半径为,求线段的长.20.(12分)设函数.(1)解不等式;(2)若,使得,求实数m的取值范围.21.(12分)在平面直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知直线的参数方程为(为参数),曲线C的极坐标方程为.(1)求曲线的直角坐标方程和直线的普通方程;(2)设直线与曲线交于两点,点,求的值.22.(10分)(1)求的展开式中的常数项;(2)用,,,,组成一个无重复数字的五位数,求满足条件的五位数中偶数的个数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:由该几何体的三视图判断出组合体各部分的几何特征,以及各部分的几何体相关几何量的数据,由面积公式求出该几何体的表面积.详解:该几何体是两个相同的半圆锥与一个半圆柱的组合体,其表面积为:S=π+4π+4+π=4+(5+)π.故选:C.点睛:本题考查了由三视图求几何体的表面积,解题的关键是根据三视图判断几何体的结构特征及相关几何量的数据.2、B【解析】
根据已知条件,求出正态分布曲线的对称轴为,根据对称性可求出的值,进而可求【详解】解:测量结果与服从正态分布正态分布曲线的对称轴为故选:B.【点睛】本题考查了正态分布中概率问题的求解.在解此类问题时,结合正态分布曲线图像进行求解,其关键是找到曲线的对称轴.3、A【解析】分析:根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得,从而求出即可.详解:随机变量服从正态分布,正态曲线的对称轴是,,而与关于对称,由正态曲线的对称性得:,故.故选:A.点睛:解决正态分布问题有三个关键点:(1)对称轴x=μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x=0.4、C【解析】
利用“散点图越接近某一条直线线性相关性越强,相关系数的绝对值越大”判断即可.【详解】根据两组样本数据的散点图知,组样本数据几乎在一条直线上,且成正相关,∴相关系数为应最接近1,组数据分散在一条直线附近,也成正相关,∴相关系数为,满足,即,故选C.【点睛】本题主要考查散点图与线性相关的的关系,属于中档题.判断线性相关的主要方法:(1)散点图(越接近直线,相关性越强);(2)相关系数(绝对值越大,相关性越强).5、C【解析】∵集合,,∴是方程的解,即∴∴,故选C6、B【解析】
先阅读理解题意,再结合题意类比推理可得:设,解得,得解.【详解】解:依题意可设,解得,故选:.【点睛】本题考查类比推理,属于基础题.7、A【解析】试题分析:“甲队获胜”包括两种情况,一是2:0获胜,二是2:1获胜.根据题意若是甲队2:0获胜,则比赛只有2局,其概率为(23)2=49;若是甲队2:1获胜,则比赛3局,其中第3考点:相互独立事件的概率及n次独立重复试验.【方法点晴】本题主要考查了相互独立事件的概率及n次独立重复试验,属于中档题.本题解答的关键是读懂比赛的规则,尤其是根据“采用三局两胜制比赛,即先胜两局者获胜且比赛结束”把整个比赛所有的可能情况分成两类,甲队以2:0获胜或2:1获胜,据此分析整个比赛过程中的每一局的比赛结果,根据相互独立事件的概率乘法公式及n次独立重复试验概率公式求得每种情况的概率再由互斥事件的概率加法公式求得答案.8、C【解析】
由f(x)为偶函数,得,化简成xlg(x2+1﹣m2x2)=0对恒成立,从而得到x2+1﹣m2x2=1,求出m=±1即可.【详解】若函数f(x)为偶函数,∴f(﹣x)=f(x),即;得对恒成立,∴x2+1﹣m2x2=1,∴(1﹣m2)x2=0,∴1﹣m2=0,∴m=±1.故选C.【点睛】本题考查偶函数的定义,以及对数的运算性质,平方差公式,属于基础题.9、A【解析】展开式中含有项的系数,,故选A.10、C【解析】
由题意,根据甲丙丁的支付方式进行分类,根据分类计数原理即可求出.【详解】顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,
①当甲丙丁顾客都不选微信时,则甲有2种选择,当甲选择现金时,其余2人种,
当甲选择支付宝时,丙丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选支付宝或现金,故有,故有2+5=7种,
②当甲丙丁顾客都不选支付宝时,则甲有2种选择,当甲选择现金时,其余2人种,
当甲选择微信时,丙丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选微信或现金,故有,故有2+5=7种,
③当甲丙丁顾客都不选银联卡时,若有人使用现金,则,若没有人使用现金,则有种,故有6+6=12种,根据分步计数原理可得共有7+7+6+6=26种,
故选C.【点睛】本题考查了分步计数原理和分类计数原理,考查了转化思想,属于难题.11、C【解析】
由题意画出图形,由线面角的概念可得α的范围,得到C正确,取特殊情况说明A,B,D错误.【详解】如图,ΔABC为等腰直角三角形,AC=BC,将ΔABC绕BC所在直线旋转至ΔPBC,则PC⊥BC,可得BC⊥平面PAC,∴二面角P-BC-A的大小θ=∠ACP,PB是平面ABC的一条斜线,则PC与平面ABC垂直时,PB与平面ABC所成角最大,则α的范围为(0,π4],故此时α<θ,故A错误;当PC与平面ABC垂直时,三棱锥C-PAB满足CA⊥CB,CA⊥CP,CB⊥CP,CA=CB=CP,则PA=PB=AB,设AC=BC=1,则PA=PB=AB=2,C在平面PAB的射影为ΔPAB求得OP=63,即PC与平面PAB所成角β的余弦值cosβ=63当θ无限接近0时,β无限接近π4,β>θ,故B综上,正确的选项是C.故选:C.【点睛】本题考查空间角及其求法,考查空间想象能力与思维能力,属难题.12、D【解析】对于A,当与两条棱上的交点都是中点时,四边形为菱形,故A错误;对于B,四边形在底面内的投影一定是正方形,故B错误;对于C,当两条棱上的交点是中点时,四边形垂直于平面,故C错误;对于D,四边形一定为平行四边形,故D正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、135【解析】
根据二项式定理确定含有的项数,进而得系数【详解】令得含有的系数为故答案为:135【点睛】本题考查二项式定理及其应用,考查基本分析求解能力,属基础题.14、5【解析】
由曲线y=x2+4x+m﹣1与x轴只有一个交点△=0可求m的值.【详解】因为与x轴只有一个交点,故,所以.故答案为5【点睛】本题考查由△判定二次函数与x轴交点个数问题,属于基础题.15、【解析】因为,所以,则曲线在点处的切线的斜率为,即所求切线方程为,即.16、8【解析】分析:根据椭圆的方程,得到,由知为直角三角形,在中利用勾股定理得|.再根据椭圆的定义得到,两式联解可得,由此即可得到Rt△F1PF2的面积为S=1.详解:∵椭圆方程为,且,可得
∵,∴…①
根据椭圆的定义,得|,
∴…②
②减去①,得,可得
即答案为:8点睛:本题给出椭圆的焦点三角形为直角三角形,求焦点三角形的面积.着重考查了椭圆的标准方程与简单几何性质等知识,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)最大值是,最小值为1.(2)【解析】
(1)记的导函数的导数为,分析可得,结合,可得在R上是增函数,再,可得在上是增函数,即得解;(2)分,,三种情况分析的单调性,继而分析的最小值,即得解.【详解】(1)为表述简单起见,记的导函数的导数为.当时,,则.,所以在R上是增函数.又,所以当时,,所以在上是增函数.故在上的最大值是,最小值为.(2),.①若,即时,,所以在R上是增函数.又,所以当时,,所以在上是增函数.所以当时,.可见,当,.又是偶函数,所以恒成立.所以符合题意.②若,即时,,所以在R上是减函数.所以当时,,所以在上是减函数.所以当时,.这与恒成立矛盾,所以不符合题意.③当时,.由,得.由的图象,知存在唯一的,使得.当时,.所以在上是减函数.所以当时,,所以在上是减函数.所以当时,.这与恒成立矛盾,所以不符合题意.综上,a的取值范围是.【点睛】本题考查了函数与导数综合,考查了二次求导,含参函数的最值,不等式恒成立问题,考查了学生综合分析,转化划归,分类讨论,数学运算的能力,属于较难题.18、(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)结合线面垂直的判定定理即可证明;(Ⅱ)采用建系法,以为原点建立空间直角坐标系,分别求出平面和平面的法向量,再由向量夹角的余弦公式求解即可;【详解】(Ⅰ)由于平面,平面,则,由题意可知,且,由线面垂直的判定定理可得平面.(Ⅱ)以点为坐标原点,平面内与垂直的直线为轴,,方向为轴,轴建立如图所示的空间直角坐标系,易知:,,,,由可得点的坐标为,由可得,设平面的法向量为:,则,据此可得平面的一个法向量为:,很明显平面的一个法向量为,,二面角的平面角为锐角,故二面角的余弦值为.【点睛】本题考查线面垂直的证明,向量法求解二面角的平面角大小,属于中档题19、(1)详见解析;(2)5.【解析】试题分析:(1)若要证明AB为圆O的切线,则应连接OC,证明OC⊥AB,根据题中条件,OA=OB得三角形OAB为等腰三角形,再由CA=CB,即C为AB中点,因此OC⊥AB,又C在圆O上,所以AB为圆O的切线。本问考查圆的切线的证明,一是证明垂直,二是说明点在圆上,就可以证明是圆的切线了。(2)直线是圆的切线,.又,可以证明,可以得出对应线段成比例,,又根据,故.设,则,又,故,即.从而可以求出x的值,即BD的长,OA=OB=OD+DB,就可以求出OB的长度。试题解析:(1)连结.又是圆的半径,是圆的切线.(2)直线是圆的切线,.又,,则有,又,故.设,则,又,故,即.解得,即..考点:1.圆的相关证明;2.三角形相似20、(1);(2).【解析】
1把用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗废物集中整治
- 知识推动创意
- 医疗项目商业计划书
- 《克线丹使用方法》课件
- 医疗器械消毒灭菌
- 安全生产档案管理制度
- 数学学案:课堂导学绝对值不等式的解法
- 医美针剂培训课程
- 医疗职称评聘
- 团日活动青春引导梦
- mbti性格测试题及答案(十篇)
- 钢筋加工厂龙门吊的安装与拆除专项施工方案
- 土力学与地基基础教案
- 方太销售及市场营销管理现状
- Module9 Unit 2 课件-外研版八年级英语上册
- 蔬菜栽培的季节与茬口安排-陇东学院教学提纲
- 三年级《稻草人》阅读测试试题附答案
- 《新闻学概论》第十章
- 超材料(metamaterials)教学讲解课件
- 矿山生态修复主要技术措施表
- 基于PLC的自动化生产线的毕业设计
评论
0/150
提交评论