




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三个正态分布密度函数(,)的图象如图所示则()A.B.C.D.2.已知复数z=1-i,则z2A.2 B.-2 C.2i D.-2i3.若定义域为的偶函数满足,且当时,,则函数在上的最大值为()A.1 B. C. D.-4.2019年4月,北京世界园艺博览会开幕,为了保障园艺博览会安全顺利地进行,某部门将5个安保小组全部安排到指定的三个不同区域内值勤,则每个区域至少有一个安保小组的排法有()A.150种 B.240种 C.300种 D.360种5.箱子中有标号为1,2,3,4,5,6且大小、形状完全相同的6个球,从箱子中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.若有4人参与摸奖,则恰好有3人获奖的概率为()A.16625 B.96625 C.6246.在各项都为正数的等差数列{an}中,若a1+a2+…+a10=30,则a5•a6的最大值等于()A.3B.6C.9D.367.的展开式中,的系数为()A. B. C.30 D.8.如果,那么的值是()A. B. C. D.9.若X是离散型随机变量,P(X=x1)=23,P(X=x2)=1A.53 B.73 C.310.函数则函数的零点个数是()A. B. C. D.11.函数的图象大致是A. B. C. D.12.设,随机变量X,Y的分布列分别为X123Y123PP当X的数学期望取得最大值时,Y的数学期望为()A.2 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.已知某种新产品的编号由1个英文字母和1个数字组成,且英文字母在前,数字在后.已知英文字母是,,,,这5个字母中的1个,数字是1,2,3,4,5,6,7,8,9这9个数字中的一个,则共有__________个不同的编号(用数字作答).15.在极坐标系中,直线被圆ρ=4截得的弦长为________.16.某地区气象台统计,该地区下雨的概率是,刮风的概率是,既刮风又下雨的概率为,设为下雨,为刮风,那么等于__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个盒子装有六张卡片,上面分别写着如下六个函数:,,,(I)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(II)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.18.(12分)已知二阶矩阵A=abcd,矩阵A属于特征值λ1=-1的一个特征向量为α119.(12分)已知函数,.(1)解关于的不等式;(2)若函数在区间上的最大值与最小值之差为5,求实数的值;(3)若对任意恒成立,求实数的取值范围.20.(12分)已知函数(1)设的最大值为,求的最小值;(2)在(1)的条件下,若,且,求的最大值.21.(12分)已知抛物线C:=2px(p>0)的准线方程为x=-,F为抛物线的焦点(I)求抛物线C的方程;(II)若P是抛物线C上一点,点A的坐标为(,2),求的最小值;(III)若过点F且斜率为1的直线与抛物线C交于M,N两点,求线段MN的中点坐标.22.(10分)某校高二理科1班共有50名学生参加学业水平模拟考试,成绩(单位:分,满分100分)大于或等于90分的为优秀,其中语文成绩近似服从正态分布,数学成绩的频率分布直方图如图.(1)这50名学生中本次考试语文、数学成绩优秀的大约各有多少人?(2)如果语文和数学两科成绩都优秀的共有4人,从语文优秀或数学优秀的这些同学中随机抽取3人,设3人中两科都优秀的有X人,求X的分布列和数学期望;(3)根据(1)(2)的数据,是否有99%以上的把握认为语文成绩优秀的同学,数学成绩也优秀?语文优秀语文不优秀合计数学优秀数学不优秀合计附:①若,则,;②;③0.10.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
正态曲线关于x=μ对称,且μ越大图象越靠近右边,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,又有σ越小图象越瘦长,得到正确的结果.【详解】根据课本中对正太分布密度函数的介绍知道:当正态分布密度函数为,则对应的函数的图像的对称轴为:,∵正态曲线关于x=μ对称,且μ越大图象越靠近右边,∴第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,只能从A,D两个答案中选一个,∵σ越小图象越瘦长,得到第二个图象的σ比第三个的σ要小,第一个和第二个的σ相等故选D.【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.2、A【解析】解:因为z=1-i,所以z23、A【解析】
根据已知的偶函数以及f(2﹣x)=﹣f(x)可以求得函数f(x)在[﹣2,2]上的解析式,进而得到g(x)在[﹣2,2]上的解析式,对g(x)进行求导可知g(x)的增减性,通过增减性求得最大值【详解】根据,得函数关于点(1,0)对称,且当时,,则时,,所以当时,;又函数为偶函数,所以当时,则,可知当,故在[-2,0)上单调递增,时,在[0,2]上单调递减,故.故选:A【点睛】本题考查函数的基本性质:对称性,奇偶性,周期性.同时利用导函数的性质研究了函数在给定区间内的最值问题,是中档题4、A【解析】
根据题意,需要将5个安保小组分成三组,分析可得有2种分组方法:按照1、1、3分组或按照1、2、2分组,求出每一种情况的分组方法数目,由加法计数原理计算可得答案.【详解】根据题意,三个区域至少有一个安保小组,所以可以把5个安保小组分成三组,有两种分法:按照1、1、3分组或按照1、2、2分组;若按照1、1、3分组,共有种分组方法;若按照1、2、2分组,共有种分组方法,根据分类计数原理知共有60+90=150种分组方法.故选:A.【点睛】本题考查排列、组合及简单计数问题,本题属于分组再分配问题,根据题意分析可分组方法进行分组再分配,按照分类计数原理相加即可,属于简单题.5、B【解析】获奖的概率为p=6C62=25,记获奖的人数为ξ,ξ~B(4,6、C【解析】试题分析:由题设,所以,又因为等差数列各项都为正数,所以,当且仅当时等号成立,所以a5·a6的最大值等于9,故选C.考点:1、等差数列;2、基本不等式.7、B【解析】
将二项式表示为,利用二项展开式通项,可得出,再利用完全平方公式计算出展开式中的系数,乘以可得出结果.【详解】,其展开式通项为,由题意可得,此时所求项为,因此,的展开式中,的系数为,故选B.【点睛】本题考查三项展开式中指定项的系数,解题时要将三项视为两项相加,借助二项展开式通项求解,考查运算求解能力,属于中等题.8、D【解析】
由诱导公式,可求得的值,再根据诱导公式化简即可.【详解】根据诱导公式,所以而所以选D【点睛】本题考查了诱导公式在三角函数式化简中的应用,属于基础题.9、C【解析】
本题考查期望与方差的公式,利用期望及方差的公式,建立方程,即可求得结论.【详解】∵E(X)=∴2∴x1=1x∴x故选C.考点:离散型随机变量的期望方差.10、A【解析】
通过对式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】函数的零点即方程和的根,函数的图象如图所示:由图可得方程和共有个根,即函数有个零点,故选:A.【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.11、D【解析】
利用函数的奇偶性、特殊值判断函数图象形状与位置即可.【详解】函数y=是奇函数,所以选项A,B不正确;当x=10时,y=>0,图象的对应点在第一象限,D正确;C错误.故选D.【点睛】本题考查函数的图象的判断,一般利用函数的定义域、值域、奇偶性、单调性、对称性、特殊值等方法判断.12、D【解析】
利用数学期望结合二次函数的性质求解X的期望的最值,然后求解Y的数学期望.【详解】∵,∴当时,EX取得最大值,此时.故选:D【点睛】本题主要考查数学期望和分布列的求法,还考查了运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为,由几何概型的计算公式可得,黄豆在阴影部分的概率为.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14、45【解析】
通过分步乘法原理即可得到答案.【详解】对于英文字母来说,共有5种可能,对于数字来说,共有9种可能,按照分步乘法原理,即可知道共有个不同的编号.【点睛】本题主要考查分步乘法原理的相关计算,难度很小.15、【解析】将直线及圆分别化成直角坐标方程:,.利用点到直线距离求出圆心到直线的距离为1.∴长等于16、【解析】由题意可知,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)数学期望为.【解析】
(Ⅰ)所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数,先求出基本事件总数为,满足条件的基本事件为两张卡片上写的函数均为奇函数,再求出满足条件的基本事件个数为,由此能求出结果.(Ⅱ)ξ可取1,2,3,1.分别求出对应的概率,由此能求出ξ的分布列和数学期望.【详解】解:(Ⅰ)为奇函数;为偶函数;为偶函数;为奇函数;为偶函数;为奇函数,所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;基本事件总数为,满足条件的基本事件为两张卡片上写的函数均为奇函数,满足条件的基本事件个数为,故所求概率.(Ⅱ)可取;;;故的分布列为.的数学期望为.【点睛】本题主要考查离散型随机变量的分布列与数学期望,属于中档题.求解该类问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.18、A=【解析】
运用矩阵定义列出方程组求解矩阵A【详解】由特征值、特征向量定义可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单19、(1);(2);(3),【解析】
(1)令由得进而求解;(2)由(1)知在上单调递增,进而求解;(3)根据指数函数的图象特征,将不等式恒成立转化为函数图象的交点问题.【详解】(1)令,则,解得,即(2)由(1)知,,在上单调递增,,,解得或(舍。(3),即令,,由和函数图象可知,对,恒成立,,在,为增函数,且图象是由向右平移3个单位得到的,所以在,恒成立,只需,即,的取值范围为,.【点睛】本题考查指数型不等式、二次函数的图象和性质、不等式恒成立问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力、运算求解能力.20、(1)(2)2【解析】
运用不等式性质求出最小值根据不等式求最大值【详解】(1)∵,∴(当且仅当时取“=”号)∴(2)∵(当且仅当时取“=”号),(当且仅当时取“=”号),(当且仅当时取“=”号),∴(当且仅当时取“=”号)∴(当且仅当时取“=”号)∴的最大值为2.【点睛】本题考查了根据绝对值的应用求出不等式的解集,运用不等式性质求解是本题关键,注意题目中的转化。21、(Ⅰ)(II)4(III)线段MN中点的坐标为()【解析】
(I)由准线方程求得,可得抛物线标准方程.(II)把转化为到准线的距离,可得三点共线时得所求最小值.(III)写出直线方程,代入抛物线方程后用韦达定理可得中点坐标.【详解】(I)∵准线方程x=-,得=1,∴抛物线C的方程为(II)过点P作准线的垂线,垂直为B,则=要使+的最小,则P,A,B三点共线此时+=+=4·(III)直线MN的方程为y=x-·设M(),N(),把y=x-代入抛物线方程,得-3x+=0∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论