




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在空间中,设α,表示平面,m,n表示直线.则下列命题正确的是()A.若m∥n,n⊥α,则m⊥α B.若m上有无数个点不在α内,则m∥αC.若,则 D.若m∥α,那么m与α内的任何直线平行2.复数的虚部为()A. B. C. D.3.用数学归纳法证明“”,从“到”左端需增乘的代数式为()A. B. C. D.4.盒子里共有个除了颜色外完全相同的球,其中有个红球个白球,从盒子中任取个球,则恰好取到个红球个白球的概率为().A. B. C. D.5.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法 B.随机数法 C.系统抽样法 D.分层抽样法6.设是等差数列.下列结论中正确的是()A.若,则 B.若,则C.若,则 D.若,则7.若“直线与圆相交”,“”;则是()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件8.某教师准备对一天的五节课进行课程安排,要求语文、数学、外语、物理、化学每科分别要排一节课,则数学不排第一节,物理不排最后一节的情况下,化学排第四节的概率是()A. B.C. D.9.某校为了解本校高三学生学习的心理状态,采用系统抽样方法从人中抽取人参加某种测试,为此将他们随机编号为,分组后在第一组采用简单随机抽样的方法抽到的号码为,抽到的人中,编号落在区间的人做试卷,编号落在的人做试卷,其余的人做试卷,则做试卷的人数为()A. B. C. D.10.设集合,集合,则()A. B. C. D.11.甲、乙两人独立地对同一目标各射击一次,其命中率分别为,现已知目标被击中,则它是被甲击中的概率是()A. B. C. D.12.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.,xRB.,xR且x≠0C.,xRD.,xR二、填空题:本题共4小题,每小题5分,共20分。13.若x,y满足约束条件x+y-3≥0x-2y≤0,则函数z=x+2y的最小值为__________14.在xOy平面上,将双曲线的一支及其渐近线和直线、围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周所得的几何体为,过作的水平截面,计算截面面积,利用祖暅原理得出体积为________15.复数的虚部是.16.随机变量的分布列如下表:01Pab且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查,派出10人的调查组,先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分),他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,并说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率.(参考数据:,)18.(12分)二次函数满足,且解集为(1)求的解析式;(2)设,若在上的最小值为,求的值.19.(12分)已知函数.Ⅰ求函数的定义域;Ⅱ求满足的实数的取值范围.20.(12分)如图,在四棱锥中,底面为菱形,,,且.(1)求证:平面平面;(2)若,求二面角的余弦值.21.(12分)已知的三个顶点为,为的中点.求:(1)所在直线的方程;(2)边上中线所在直线的方程;(3)边上的垂直平分线的方程.22.(10分)把编号为1、2、3、4、5的小球,放入编号为1、2、3、4、5的盒子中.(1)恰有两球与盒子号码相同;(2)球、盒号码都不相同,问各有多少种不同的方法
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据线面位置关系的判定定理与性质定理,逐一判定,即可求解,得到答案.【详解】对于A中,若,则,根据线面垂直的判定定理,可知是正确的;对于B中,若直线与平面相交,则除了交点以外的无数个点都不在平面内,所以不正确;对于C中,若,则或或与相交,所以不正确;对于D中,若,则与平面内的直线平行或异面,所以不正确,故选A.【点睛】本题主要考查了线面位置关系的判定与证明,其中解答中熟记线面位置关系的判定定理和性质定理是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】
利用复数除法运算求得,根据虚部定义得到结果.【详解】的虚部为:本题正确选项:【点睛】本题考查复数虚部的求解,涉及到复数的除法运算,属于基础题.3、B【解析】
分别求出时左端的表达式,和时左端的表达式,比较可得“从到”左端需增乘的代数式.【详解】由题意知,当时,有,当时,等式的左边为,所以左边要增乘的代数式为.故选:.【点睛】本题主要考查的是归纳推理,需要结合数学归纳法进行求解,熟知数学归纳法的步骤,最关键的是从到,考查学生仔细观察的能力,是中档题.4、B【解析】由题意得所求概率为.选.5、D【解析】试题分析:由于样本中男生与女生在学习兴趣与业余爱好方面存在差异性,因此所采用的抽样方法是分层抽样法,故选D.考点:抽样方法.6、C【解析】
先分析四个答案,A举一反例,而,A错误,B举同样反例,,而,B错误,D选项,故D错,下面针对C进行研究,是等差数列,若,则设公差为,则,数列各项均为正,由于,则,故选C.考点:本题考点为等差数列及作差比较法,以等差数列为载体,考查不等关系问题,重点是对知识本质的考查.7、B【解析】
直线y=x+b与圆x2+y2=1相交⇔1,解得b.即可判断出结论.【详解】直线y=x+b与圆x2+y2=1相交⇔1,解得.∴“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的必要不充分条件.故选:B.【点睛】本题考查了充分必要条件,直线与圆的位置关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.8、C【解析】
先求出事件:数学不排第一节,物理不排最后一节的概率,设事件:化学排第四节,计算事件的概率,然后由公式计算即得.【详解】设事件:数学不排第一节,物理不排最后一节.设事件:化学排第四节.,,故满足条件的概率是.故选:C.【点睛】本小题主要考查条件概率计算,考查古典概型概率计算,考查实际问题的排列组合计算,属于中档题.9、B【解析】,由题意可得抽到的号码构成以为首项,以为公差的等差数列,且此等差数列的通项公式为,落入区间的人做问卷,由,即,解得,再由为正整数可得,做问卷的人数为,故选B.10、B【解析】
求解出集合,根据并集的定义求得结果.【详解】本题正确选项:【点睛】本题考查集合运算中的并集运算,属于基础题.11、D【解析】分析:根据题意,记甲击中目标为事件A,乙击中目标为事件B,目标被击中为事件C,由相互独立事件的概率公式,计算可得目标被击中的概率,进而由条件概率的公式,计算可得答案.详解:根据题意,记甲击中目标为事件A,乙击中目标为事件B,目标被击中为事件C,则P(C)=1﹣P()P()=1﹣(1﹣0.8)(1﹣0.5)=0.9;则目标是被甲击中的概率为P=.故答案为:D.点睛:(1)本题主要考查独立事件的概率和条件概率,意在考查学生对这些知识的掌握水平和分析推理能力.(2)条件概率的公式:,=.条件概率一般有“在已发生的条件下”这样的关键词,表明这个条件已经发生,发生了才能称为条件概率.但是有时也没有,要靠自己利用条件概率的定义识别.12、B【解析】
首先判断奇偶性:A,B为偶函数,C为奇函数,D既不是奇函数也不是偶函数,所以排除C、D,对于先减后增,排除A,故选B.考点:函数的奇偶性、单调性.二、填空题:本题共4小题,每小题5分,共20分。13、5.【解析】分析:作出约束条件所表示的平面区域,结合图象,得到目标函数经过点B时,目标函数取得最小值,即可求解.详解:作出约束条件所表示的平面区域,如图所示,目标函数z=x+2y,则y=-1由图象可知当取可行域内点B时,目标函数取得最小值,由x+y-3=0x-2y=0,解得B(1,2)此时函数的最小值为z=1+2×2=5.点睛:本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z=ax+by.求这类目标函数的最值常将函数z=ax+by转化为直线的斜截式:y=-abx+zb,通过求直线的截距zb的最值间接求出z的最值;(2)14、.【解析】分析:由已知中过(0,y)(0≤y≤4)作Ω的水平截面,计算截面面积,利用祖暅原理得出Ω的体积.详解:在xOy平面上,将双曲线的一支及其渐近线和直线y=0,y=4围成的封闭图形记为D,如图中阴影部分.则直线y=a与渐近线交于一点A(,a)点,与双曲线的一支交于B(,a)点,记D绕y轴旋转一周所得的几何体为Ω.过(0,y)(0≤y≤4)作Ω的水平截面,则截面面积S=,利用祖暅原理得Ω的体积相当于底面面积为9π高为4的圆柱的体积,∴Ω的体积V=9π×4=36π,故答案为36π点睛:本题考查的知识点是类比推理,其中利用祖暅原理将不规则几何体的体积转化为底面面积为9π高为4的圆柱的体积,是解答的关键.祖暅原理也可以成为中国的积分,将图形的横截面的面积在体高上积分,得到几何体的体积.15、【解析】试题分析:因为,,所以,复数的虚部是.考点:复数的代数运算,复数的概念.点评:简单题,复数的除法,要注意分子分母同乘分母的共轭复数,实现分母实数化.16、【解析】
先由及概率和为1,解得,再利用方差公式计算.【详解】解:因为,又,
所以,.
故答案为:.【点睛】本题考查离散型随机变量的数学方差的求法,是基础题,解题时要认真审题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)乙城市,理由见解析;(2)【解析】
(1)求出甲已两个城市的打分平均数及方差,根据大小判断即可;(2)设事件“甲、乙两个城市的打分中,各抽取2个,有大于80分的分数”,事件“甲、乙两个城市的打分中,各抽取2个,乙城市的分数都小于80分”,根据条件概率公式求解即可.【详解】(1)甲城市的打分平均数为:,乙城市的打分平均数为:,则甲城市的打分的方差为:乙城市的打分的方差为:甲乙两城市的打分平均数的平均数相同,但是乙城市打分波动更小,故乙城市更应该入围“国家文明城市”;(2)由茎叶图可得,分数在80分以上的甲城市有4个,乙城市有5个.设事件“甲、乙两个城市的打分中,各抽取2个,有大于80分的分数”,事件“甲、乙两个城市的打分中,各抽取2个,乙城市的分数都小于80分”,则,因为,,所以.【点睛】本题考核方差,平均数的计算,考查条件概率的求解,是中档题.18、(1)(2)【解析】
(1)直接根据两个已知条件得到关于a,b,c的方程,解方程组即得的解析式;(2)对m分类讨论,利用二次函数的图像和性质求m的值.【详解】(1)∵∴即①又∵即的解集为∴是的两根且a>0.∴②③a=2,b=1,c=-3∴(2)其对称轴方程为①若即m<-3时,由得不符合②若即时,得:符合③若即m>9时,=由得不符合题意∴【点睛】这个题目考查了二次函数的解析式的求法,二次函数的解析式有:两根式,即已知函数的两个零点可设这种形式;顶点式,已知函数的顶点可设为这种形式;一般式,涉及三个未知数,需列方程组求解;二次函数的最值和函数的对称轴有直接关系,在整个实数集上,最值在轴处取得,在小区间上需要讨论轴和区间的关系,得到最值.19、Ⅰ,或;Ⅱ.【解析】
Ⅰ由函数的解析式可得,解一元二次不等式,求出的范围,从而可得结果;Ⅱ由,可得,结合对数函数的定义域可得,,解一元二次不等式组,可求得实数的取值范围.【详解】Ⅰ对于函数,应有,求得,或,故该函数的定义域为,或.Ⅱ,即,,即,求得或,即实数x的取值范围为.【点睛】本题主要考查对数函数的定义域,对数的运算以及利用一元二次不等式的解法不等式,意在考查对基础知识的掌握与应用,属于基础题.20、(1)见解析;(2).【解析】
(1)先根据计算得线线线线垂直,再根据线面垂直判定定理以及面面垂直判定定理得结论,(2)建立空间直角坐标系,利用空间向量求二面角.【详解】(1)证明:取中点,连结,,,因为底面为菱形,,所以.因为为的中点,所以.在△中,,为的中点,所以.设,则,,因为,所以.在△中,,为的中点,所以.在△和△中,因为,,,所以△△.所以.所以.因为,平面,平面,所以平面.因为平面,所以平面平面.(2)因为,,,平面,平面,所以平面.所以.由(1)得,,所以,,所在的直线两两互相垂直.以为坐标原点,分别以所在直线为轴,轴,轴建立如图所示的空间直角坐标系.设,则,,,,所以,,,设平面的法向量为,则令,则,,所以.设平面的法向量为,则令,则,,所以.设二面角为,由于为锐角,所以.所以二面角的余弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息技术与农业智能化推广合作协议
- 特色养殖技术授权合同
- 线上商城购物平台入驻协议条款说明
- 网络服务提供商合作与协议模板
- 2025年广西出租车司机资格证考试内容
- 49档案管理实施细则(电气+土建)
- 聚焦财富管理市场变革:2025年客户需求与服务升级趋势分析
- 2025年社交电商项目建议书
- 财务报表分析综合练习题(含答案)
- 2025年气体放电灯:氙气灯合作协议书
- 肾肿瘤考试题库及答案
- 2025年中小学教师信息技术应用能力提升培训测试题库及答案
- 肾结石健康科普指南
- 中小学美术教师招聘考试题及答案(5套)
- 二零二五年度农村自建房买卖合同A3版(含土地使用)
- 村子绿化设计方案(3篇)
- “艾梅乙”感染者消除医疗歧视制度-
- GB/T 10069.3-2024旋转电机噪声测定方法及限值第3部分:噪声限值
- GB/T 18849-2023机动工业车辆制动器性能和零件强度
- GA 1808-2022军工单位反恐怖防范要求
- 热奄包(精品课件)
评论
0/150
提交评论