版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.斐波那契螺旋线,也称“黄金蜾旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD内任取一点,该点取自阴影部分的概率为()A. B. C. D.2.已知为双曲线:右支上一点,为其左顶点,为其右焦点,满足,,则点到直线的距离为()A. B. C. D.3.6本相同的数学书和3本相同的语文书分给9个人,每人1本,共有不同分法()A. B.C. D.4.甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人分别采访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是()A.甲B.乙C.丙D.丁5.已知一段演绎推理:“因为指数函数是增函数,而是指数函数,所以是增函数”,则这段推理的()A.大前提错误 B.小前提错误 C.结论正确 D.推理形式错误6.已知,分别为双曲线:的左,右焦点,点是右支上一点,若,且,则的离心率为()A. B.4 C.5 D.7.在极坐标中,O为极点,曲线C:ρ=2cosθ上两点A、A.34 B.34 C.38.某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为()A. B. C.1 D.29.中,若,则该三角形一定是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形10.已知A={|},B={|},则A∪B=A.{|或} B.{|} C.{|} D.{|}11.曲线的参数方程为,则曲线是()A.线段 B.双曲线的一支 C.圆弧 D.射线12.对变量x,y有观测数据(xi,yiA.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关二、填空题:本题共4小题,每小题5分,共20分。13.若函数,若,则=______.14.若存在过点1,0的直线与曲线y=x3和y=ax2+15.在直角坐标系中,若直线(为参数)过椭圆(为参数)的左顶点,则__________.16.正四棱柱的底面边长为2,若与底面ABCD所成角为60°,则和底面ABCD的距离是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线经过点,其倾斜角为,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系,设曲线C的极坐标方程为.(1)若直线与曲线C有公共点,求的取值范围:(2)设为曲线C上任意一点,求的取值范围.18.(12分)设是数列{}的前项和,,且.(I)求数列{}的通项公式;(Ⅱ)设,求.19.(12分)已知正项数列中,且(1)分别计算出的值,然后猜想数列的通项公式;(2)用数学归纳法证明你的猜想.20.(12分)双曲线的左、右焦点分别为、,直线过且与双曲线交于、两点.(1)若的倾斜角为,,是等腰直角三角形,求双曲线的标准方程;(2),,若的斜率存在,且,求的斜率;(3)证明:点到已知双曲线的两条渐近线的距离的乘积为定值是该点在已知双曲线上的必要非充分条件.21.(12分)已知正项数列满足:,,.(Ⅰ)求;(Ⅱ)证明:;(Ⅲ)设为数列的前项和,证明:.22.(10分)已知直线(为参数),曲线(为参数).(1线与曲线的普通方程;(2),若直线与曲线相交于两点(点在点的上方),求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据几何概型的概率公式,分别求出阴影部分面积和矩形ABCD的面积,即可求得。【详解】由已知可得:矩形的面积为,又阴影部分的面积为,即点取自阴影部分的概率为,故选。【点睛】本题主要考查面积型的几何概型的概率求法。2、D【解析】
由题意可得为等边三角形,求出点的坐标,然后代入双曲线中化简,然后求出即可【详解】由题意可得,由,可得为等边三角形所以有,代入双曲线方程可得结合化简可得,可解得因为,所以所以点到直线的距离为故选:D【点睛】本题考查的是等边三角形的性质,双曲线的方程及化简运算能力,属于中档题.3、A【解析】先分语文书有种,再分数学书有,故共有=,故选A.4、A【解析】分析:因为四位歌手中只有一个人说的是真话,假设某一个人说的是真话,如果与条件不符,说明假设不成立,如果与条件相符,说明假设成立.详解:若乙是获奖的歌手,则甲、乙、丁都说的真话,不符合题意;若丙是获奖的歌手,则甲、丁都说的真话,不符合题意;若丁是获奖的歌手,则乙、丙都说的真话,不符合题意;若甲是获奖的歌手,则甲、乙、丙都说的假话,丁说的真话,符合题意;故选A.点睛:本题考查合情推理,属基础题.5、A【解析】
分析该演绎推理的大前提、小前提和结论,结合指数函数的图象和性质判断正误,可以得出正确的答案.【详解】该演绎推理的大前提是:指数函数是增函数,小前提是:是指数函数,结论是:是增函数.其中,大前提是错误的,因为时,函数是减函数,致使得出的结论错误.故选:A.【点睛】本题考查了演绎推理的应用问题,解题时应根据演绎推理的三段论是什么,进行逐一判定,得出正确的结论,是基础题.6、C【解析】
在中,求出,,然后利用双曲线的定义列式求解.【详解】在中,因为,所以,,,则由双曲线的定义可得所以离心率,故选C.【点睛】本题考查双曲线的定义和离心率,解题的关键是求出,,属于一般题.7、A【解析】
将A、B两点的极角代入曲线C的极坐标方程,求出OA、OB,将A、B的极角作差取绝对值得出∠AOB,最后利用三角形的面积公式可求出ΔAOB的面积。【详解】依题意得:A3,π6、所以SΔAOB=1【点睛】本题考查利用极坐标求三角形的面积,理解极坐标中极径、极角的含义,体会数与形之间的关系,并充分利用正弦、余弦定理以及三角形面积公式求解弦长、角度问题以及面积问题,能起到简化计算的作用。8、B【解析】
锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小,计算得到答案.【详解】锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小故答案选B【点睛】本题考查了锥体的体积,判断底面是等腰直角三角形是解题的关键.9、D【解析】
利用余弦定理角化边后,经过因式分解变形化简可得结论.【详解】因为,所以,所以,所以,所以,所以,所以或,所以或,所以三角形是等腰三角形或直角三角形.故选:D【点睛】本题考查了利用余弦定理角化边,考查了利用余弦定理判断三角形的形状,属于基础题.10、D【解析】
根据二次不等式的解法得到B={|}=,再根据集合的并集运算得到结果.【详解】B={|}=,A={|},则A∪B={|}.故答案为:D.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.11、A【解析】由代入消去参数t得又所以表示线段。故选A12、C【解析】试题分析:由散点图1可知,点从左上方到右下方分布,故变量x与y负相关;由散点图2可知,点从左下方到右上方分布,故变量u与v正相关,故选C考点:本题考查了散点图的运用点评:熟练运用随机变量的正负相关的概念是解决此类问题的关键,属基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
本题首先可以对分段函数进行研究,确定每一个分段函数所对应的函数解析式以及取值范围,然后先计算出的值,再对与之间的关系进行分类讨论,最后得出结果.【详解】因为函数所以,若即则解得(舍去),若,即,则解得,综上所述,答案为【点睛】本题考查的知识点是分段函数的应用以及函数求值,难度不大,属于基础题.考查分段函数的时候一定要能够对每一个取值范围所对应的函数解析式有一个确定的认识.14、-1或-【解析】分析:先求出过点1,0和y=x2详解:设直线与曲线y=x2的切点坐标为则函数的导数为f'x则切线斜率k=3x则切线方程为y-x∵切线过点1,0,∴-x即2x解得x0=0或①若x0=0,此时切线的方程为此时直线与y=ax2即ax则Δ=1542②若x0=32代入y=ax2+消去y可得ax又由Δ=0,即9+4×9解可得a=-1,故a=-1或a=-2564,故答案为-1或点睛:应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点Ax0,fx0求斜率k,即求该点处的导数k=f'x0;(2)己知斜率k求切点Ax1,fx1,即解方程15、.【解析】分析:直接化参数方程为普通方程,得到直线和椭圆的普通方程,求出椭圆的左顶点,代入直线的方程,即可求得的值.详解:由已知可得圆(为参数)化为普通方程,可得,故左顶点为,直线(为参数)化为普通方程,可得,又点在直线上,故,解得,故答案是.点睛:该题考查的是有关直线的参数方程与椭圆的参数方程的问题,在解题的过程中,需要将参数方程化为普通方程,所以就需要掌握参数方程向普通方程的转化-----消参,之后要明确椭圆的左顶点的坐标,以及点在直线上的条件,从而求得参数的值.16、.【解析】分析:确定A1C1到底面ABCD的距离为正四棱柱ABCD﹣A1B1C1D1的高,即可求得结论.详解:∵正四棱柱ABCD﹣A1B1C1D1,∴平面ABCD∥平面A1B1C1D1,∵A1C1⊂平面A1B1C1D1,∴A1C1∥平面ABCD∴A1C1到底面ABCD的距离为正四棱柱ABCD﹣A1B1C1D1的高∵正四棱柱ABCD﹣A1B1C1D1的底面边长为2,AC1与底面ABCD成60°角,∴A1A=2tan60°=故答案为.点睛:本题考查线面距离,确定A1C1到底面ABCD的距离为正四棱柱ABCD﹣A1B1C1D1的高是解题的关键.如果直线和已知的平面是平行的,可以将直线和平面的距离,转化为直线上一点到平面的距离.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)将极坐标方程和参数方程转化为普通方程,再利用直线与圆的位置关系进行求解;(2)利用三角换元法及三角恒等变换进行求解.试题解析:(I)将曲线C的极坐标方程化为直角坐标方程为直线l的参数方程为将代入整理得直线l与曲线C有公共点,的取值范围是(II)曲线C的方程可化为其参数方程为为曲线上任意一点,的取值范围是.考点:1.极坐标方程、参数方程与普通方程的互化.18、(Ⅰ)an=2n.(Ⅱ)【解析】
(Ⅰ)利用数列递推关系即可得出.(Ⅱ)利用裂项求和即可求解.【详解】∵4Sn=an(an+2),①当n=1时得,即a1=2,当n≥2时有4Sn﹣1=an﹣1(an﹣1+2)②由①﹣②得,即2(an+an﹣1)=(an+an﹣1)(an﹣an﹣1),又∵an>0,∴an﹣an﹣1=2,∴an=2+2(n﹣1)=2n.(Ⅱ)∵,∴Tn=b1+b2+…+bn【点睛】本题考查了数列递推关系、裂项求和、数列的单调性,考查了推理能力与计算能力,属于中档题.19、(1);;(2)见解析.【解析】
(1)逐个计算计算出的值,再通过观察可猜。(2)先检验n=1满足,再假设时(*)式成立,即,下证即可证明。【详解】(1)令得化简得,解得或.令得化简得,解得或令得化简得,解得或猜想(*).①当时,,(*)式成立;②假设时(*)式成立,即,那么当时,化简得所以当时,(*)式也成立.综上:由①②得当时,【点睛】本题考查归纳-猜想-证明,这一常见思维方式,而与自然数相关的结论证明我们常用数学归纳法。20、(1);(2);(3)见解析.【解析】
(1)将代入双曲线的方程,得出,由是等腰直角三角形,可得出,再将代入可得出的值,由此可得出双曲线的标准方程;(2)先求出双曲线的标准方程,并设直线的方程为,将该直线的方程与双曲线的方程联立,列出韦达定理,并求出线段的中点的坐标,由得出,转化为,利用这两条直线斜率之积为,求出实数的值,可得出直线的斜率;(3)设点,双曲线的两条渐近线方程为,利用点到直线的距离公式、双曲线的方程以及必要不充分条件的定义,即可得证.【详解】(1)直线的倾斜角为,,可得直线,代入双曲线方程可得,是等腰直角三角形可得,即有,解得,,则双曲线的方程为;(2)由,,可得,直线的斜率存在,设为,设直线方程为,,可得,由,联立双曲线方程,可得,可得,线段的中点为,由,可得,解得,满足,故直线的斜率为;(3)证明:设,双曲线的两条渐近线为,可得到渐近线的距离的乘积为,即为,可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《空间交互设计》2022-2023学年第一学期期末试卷
- 淮阴师范学院《家具设计》2022-2023学年第一学期期末试卷
- 淮阴师范学院《影视改编与文化创意》2022-2023学年第一学期期末试卷
- 淮阴工学院《数据分析与挖掘》2023-2024学年期末试卷
- 淮阴师范学院《机器学习》2023-2024学年期末试卷
- DB1405-T 058-2024煤层气排采技术规范
- 文书模板-《电气线路装调实训报告总结》
- 五年级写人的作文450字【六篇】
- 制糖行业销售渠道整合策略考核试卷
- 建筑机电安装工人安全知识手册考核试卷
- 安装培训方案
- 2023边缘物联代理技术要求
- 普宁市北部中心水厂榕江取水工程环境影响报告书
- 不良资产项目律师法律尽调报告(模板)
- 接交车辆检查表-原版
- 剪辑师职业生涯规划与管理
- 水稻栽培技术-水稻常规栽培技术
- 四风整改台账清单
- 标准报价单模板(二)
- 【期中】第1-4单元易错题专项攻略-数学四年级上册苏教版(含答案)
- 《mc入门教程》课件
评论
0/150
提交评论