




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列,满足,,,则数列的前项和为().A. B. C. D.2.如图,是椭圆与双曲线的公共焦点,分别是在第二、四象限的公共点,若四边形为矩形,则的离心率是()A. B. C. D.3.已知集合,,全集,则等于()A. B. C. D.4.若为虚数单位,则()A. B. C. D.5.已知为等差数列,,则()A.42 B.40 C.38 D.366.设,则的值为()A. B.1 C.0 D.-17.若(是虚数单位),则复数的模为()A. B. C. D.8.函数y=sin2x的图象可能是A. B.C. D.9.已知两个随机变量X,Y满足X+2Y=4,且X~N1, A.32,2 B.12,1 C.32,1 D.10.某学校有2200名学生,现采用系统抽样方法抽取44人,将2200人按1,2,…,2200随机编号,则抽取的44人中,编号落在[101,500]的人数为()A.7 B.8 C.9 D.1011.下面给出了四种类比推理:①由实数运算中的类比得到向量运算中的;②由实数运算中的类比得到向量运算中的;③由向量的性质类比得到复数的性质;④由向量加法的几何意义类比得到复数加法的几何意义;其中结论正确的是A.①② B.③④ C.②③ D.①④12.直线的斜率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数(i为虚数单位),则复数z的模为_____.14.已知复数,其中是虚数单位,则复数的实部为__________.15.复数(是虚数单位)的虚部是_________16.已知球的体积是V,则此球的内接正方体的体积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,.(1)讨论函数的单调性;(2)已知,若存在使得,求实数的取值范围.18.(12分)椭圆经过点,左、右焦点分别是,,点在椭圆上,且满足的点只有两个.(Ⅰ)求椭圆的方程;(Ⅱ)过且不垂直于坐标轴的直线交椭圆于,两点,在轴上是否存在一点,使得的角平分线是轴?若存在求出,若不存在,说明理由.19.(12分)求的二项展开式中的第5项的二项式系数和系数.20.(12分)在直角坐标系中,圆的参数方程为以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的普通方程;(2)直线的极坐标方程是,射线:与圆的交点为、,与直线的交点为,求线段的长.21.(12分)(1)解不等式:(2)设,求证:22.(10分)已知数列满足:.(Ⅰ)若,且,,成等比数列,求;(Ⅱ)若,且,,,成等差数列,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由题意是数列是等差数列,数列的等比数列,分别求出它们的通项,再利用等比数列前项和公式即可求得.【详解】因为,,所以数列是等差数列,数列的等比数列,因此,,数列的前项和为:.故选:.【点睛】本题主要考查的是数列的基本知识,等差数列、等比数列的通项公式以及等比数列的求和公式的应用,是中档题.2、D【解析】
试题分析:由椭圆与双曲线的定义可知,|AF2|+|AF1|=4,|AF2|-|AF1|=2a(其中2a为双曲线的长轴长),∴|AF2|=a+2,|AF1|=2-a,又四边形AF1BF2是矩形,∴|AF1|2+|AF2|2=|F1F2|2=(2)2,∴a=,∴e==.考点:椭圆的几何性质.3、D【解析】
先解出集合、,再利用补集和交集的定义可得出.【详解】因为,即或,所以,则,应选答案D.【点睛】本题考查集合的交集和补集的运算,同时也涉及了二次不等式与对数不等式的解法,考查运算求解能力,属于中等题.4、D【解析】
根据复数的除法运算法则,即可求出结果.【详解】.故选D【点睛】本题主要考查复数的除法运算,熟记运算法则即可,属于基础题型.5、B【解析】分析:由已知结合等差数列的性质可求,然后由即可求解.详解:,,,,故选:B.点睛:(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.6、C【解析】
首先采用赋值法,令,代入求值,通分后即得结果.【详解】令,,,.故选:C【点睛】本题考查二项式定理和二项式系数的性质,涉及系数和的时候可以采用赋值法求和,本题意在考查化归转化和计算求解能力,属于中档题型.7、D【解析】
利用复数的乘法、除法法则将复数表示为一般形式,然后利用复数的求模公式计算出复数的模.【详解】因为,所以,所以,故选D.【点睛】本题考查复数的乘法、除法法则以及复数模的计算,对于复数相关问题,常利用复数的四则运算法则将复数表示为一般形式进行求解,考查计算能力,属于基础题.8、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.9、C【解析】
先由X~N1, 22,得E(X)=1,D(X)=4,然后由【详解】由题意X~N1, 22因为X+2Y=4,所以Y=2-1所以E(Y)=2-12E(X)=故选C.【点睛】该题考查的正态分布的期望与方差,以及两个线性关系的变量的期望与方差之间的关系,属于简单题目.10、B【解析】
先求出每一个小组的人数,再求编号落在[101,500]的人数.【详解】每一个小组的人数为220044所以编号落在[101,500]的人数为500-10050故选:B【点睛】本题主要考查系统抽样,意在考查学生对该知识的理解掌握水平,属于基础题.11、D【解析】
根据向量数量积的定义、复数的运算法则来进行判断.【详解】①设与的夹角为,则,,则成立;②由于向量的数量积是一个实数,设,,所以,表示与共线的向量,表示与共线的向量,但与不一定共线,不一定成立;③设复数,则,是一个复数,所以不一定成立;④由于复数在复平面内可表示的为向量,所以,由向量加法的几何意义类比可得到复数加法的几何意义,这个类比是正确的.故选D.【点睛】本题考查数与向量、向量与复数之间的类比推理,在解这类问题时,除了考查条件的相似性之外,还要注意定义的理解,考查逻辑推理能力,属于中等题.12、A【解析】
将直线方程化为斜截式,可得出直线的斜率.【详解】将直线方程化为斜截式可得,因此,该直线的斜率为,故选A.【点睛】本题考查直线斜率的计算,计算直线斜率有如下几种方法:(1)若直线的倾斜角为且不是直角,则直线的斜率;(2)已知直线上两点、,则该直线的斜率为;(3)直线的斜率为;(4)直线的斜率为.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
直接利用复数代数形式的四则运算化简复数z,再由复数模的公式计算得答案.【详解】,则复数z的模为.故答案为.【点睛】本题考查了复数代数形式的运算,考查了复数模的求法,是基础题.14、【解析】
通过分子分母同时乘以分母的共轭复数化简,从而得到答案.【详解】由题意复数,因此复数的实部为.【点睛】本题主要考查复数的四则运算,实部的相关概念,难度不大.15、【解析】
根据复数的结果,直接判断出其虚部是多少.【详解】因为,所以复数的虚部为.故答案为:.【点睛】本题考查复数的虚部的辨别,难度容易.已知复数,则为复数的实部,为复数的虚部.16、【解析】
设球的半径为R,球内接正方体的棱长为a,根据题意知球内接正方体的体对角线是球的直径,得出a与R的关系,再计算正方体的体积.【详解】设球的半径为R,球内接正方体的棱长为a,则球的体积是,又球的内接正方体的体对角线是球的直径,即,;正方体的体积为.故答案为.【点睛】本题主要考查了球与其内接正方体的关系,属于容易题题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案不唯一,具体见解析(2)【解析】
(1)求导数,讨论的不同范围得到单调区间.(2)设函数,,函数单调递增推出,解得答案.【详解】(1)的定义域为.,,则.当时,则,在单调递减;当时,,有两个根,,不妨设,则,,由,,所以.所以时,,单调递减;,或,单调递增;当时,方程的,则,在单调递增;综上所述:当时,的减区间为;当时,的减区间为,增区间为和.当时,的增区间为.(2),,,所以在单调递增,,,要使得在有解,当且仅当,解得:.【点睛】本题考查了函数的单调性,存在性问题,构造,判断是解题的关键.18、(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ)由题得点为椭圆的上下顶点,得到a,b,c的方程组,解方程组即得椭圆的标准方程;(Ⅱ)设直线的方程为,联立直线和椭圆方程得到韦达定理,根据得到.所以存在点,使得的平分线是轴.【详解】解:(I)由题设知点为椭圆的上下顶点,所以,b=c,,故,,故椭圆方程为.(Ⅱ)设直线的方程为,联立消得设,坐标为,则有,,又,假设在轴上存在这样的点,使得轴是的平分线,则有而将,,代入有即因为,故.所以存在点,使得的平分线是轴.【点睛】本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系和椭圆中的存在性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、二项式系数为,系数为.【解析】分析:根据二项式系数的展开式得到结果.详解:,二项式系数为,系数为.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.20、(1);(2)1.【解析】
参数方程化为普通方程可得圆的普通方程为.圆的极坐标方程得,联立极坐标方程可得,,结合极坐标的几何意义可得线段的长为1.【详解】圆的参数方程为消去参数可得圆的普通方程为.化圆的普通方程为极坐标方程得,设,则由解得,,设,则由解得,,.【点睛】本题主要考查参数方程与普通方程的应用,极坐标的几何意义及其应用等知识,意在考查学生的转化能力和计算求解能力.21、(1)(2)见解析【解析】
(1)根据零点分段法,分三段建立不等式组,解出各不等式组的解集,再求并集即可.(2)运用柯西不等式,直接可以证明不等式,注意考查等号成立的条件,.【详解】(1)解:原不等式等价于或或即:或或故元不等式的解集为:(2)由柯西不等式得,,当且仅当,即时等号成立.所以【点睛】本题考查绝对值不等式得解法、柯西不等式等基础知识,考查运算能力.含绝对值不等式的解法:(1)定义法;即利用去掉绝对值再解(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式;(3)平方法:通常适用于两端均为非负实数时(比如);(4)图象法或数形结合法;22、(Ⅰ)或;(Ⅱ)是小于等于的所有实数值.【解析】
(Ⅰ)根据所给的递推公式,把,用表示,然后根据,,成等比数列,列出等式,求出;(Ⅱ)根据所给的递推公式,把,用表示,然后根据,,成等差数列,列出等式,求出;【详解】(I)因为,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年学校元旦活动方案模板
- 2025年度社区综合治理工作方案书
- 一年级语文下册亮点大试卷电子版
- 2025年电动胡须刀片项目可行性研究报告
- 2025年瓷盆清洁剂项目可行性研究报告
- 2025年珍迪消食片项目可行性研究报告
- 2025年特级黑蜡项目可行性研究报告
- 2025年牙龈保护剂项目可行性研究报告
- 沈阳工学院《数学选讲》2023-2024学年第二学期期末试卷
- 武汉城市学院《戒毒学》2023-2024学年第二学期期末试卷
- 罩棚檐口标识更换施工方案
- 英语演讲比赛评分标准-评分表
- 炉壁温度计算详解
- 胃肠道生活质量指数(GIQLI)
- 绿色建筑验收自评报告全
- GB/T 42288-2022电化学储能电站安全规程
- 小说中景物描写的作用
- 第十二讲 建设社会主义生态文明PPT习概论2023优化版教学课件
- 工商管理实习周记十篇
- 幼儿园体育游戏活动评价表
- 2023年通管局安全员考试-培训及考试题库(导出版)
评论
0/150
提交评论