2022-2023学年河南洛阳名校数学高二第二学期期末考试试题含解析_第1页
2022-2023学年河南洛阳名校数学高二第二学期期末考试试题含解析_第2页
2022-2023学年河南洛阳名校数学高二第二学期期末考试试题含解析_第3页
2022-2023学年河南洛阳名校数学高二第二学期期末考试试题含解析_第4页
2022-2023学年河南洛阳名校数学高二第二学期期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若正整数除以正整数后的余数为,则记为,例如.如图程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的等于()A.4 B.8 C.16 D.322.已知向量满足,且,则的夹角为()A. B. C. D.3.在长方体中,为棱的中点,则异面直线与所成角的余弦值为()A. B. C. D.4.将曲线按照伸缩变换后得到的曲线方程为()A. B.C. D.5.如图,网格纸上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的表面积为()A. B. C. D.6.使得的展开式中含有常数项的最小的n为()A. B. C. D.7.使函数y=xsinx+cosx是增函数的区间可能是()A. B.(π,2π)C. D.(2π,3π)8.某体育彩票规定:从01到36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后再从01到17个号中选出3个连续的号,从19到29个号中选出2个连续的号,从30到36个号中选出1个号组成一注.若这个人要把这种要求的号全买,至少要花的钱数为()A.2000元 B.3200元 C.1800元 D.2100元9.如图,表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是().A.0.994 B.0.686 C.0.504 D.0.49610.设,则()A. B. C. D.11.若,则的值为()A.-2 B.-1 C.0 D.112.将甲桶中的升水缓慢注入空桶乙中,后甲桶剩余的水量符合指数衰减曲线,假设过后甲桶和乙桶的水量相等,若再过甲桶中的水只有升,则的值为()A.10 B.9 C.8 D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线,的焦点分别在轴,轴上,渐近线方程为,离心率分别为,.则的最小值为___________.14.如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为_____.15.如图,边长为的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒粒豆子,粒中有粒落在阴影区域,则阴影区域的面积约为__________.16.在数列中,,且.(1)求,,的值;(2)猜想数列的通项公式的表达式,并用数学归纳法证明你的猜想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)求的单调区间;(2)求使对恒成立的的取值范围.18.(12分)已知函数.(Ⅰ)当时,求的最大值;(Ⅱ)若对恒成立,求实数的取值范围.19.(12分)已知集合,.(1)求集合的补集;(2)若“”是“”的必要条件,求实数的取值范围.20.(12分)设等比数列的前项和为,已知,且成等差数列,.(1)求数列的通项公式;(2),求数列的前和.21.(12分)设函数,,,其中是的导函数.(1)令,,,求的表达式;(2)若恒成立,求实数的取值范围.22.(10分)如图直线经过圆上的点,OA=OB,CA=CB,圆交直线于点、,其中在线段上,连接、.(1)证明:直线是圆的切线;(2)若,圆的半径为,求线段的长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】初如值n=11,i=1,i=2,n=13,不满足模3余2.i=4,n=17,满足模3余2,不满足模5余1.i=8,n=25,不满足模3余2,i=16,n=41,满足模3余2,满足模5余1.输出i=16.选C.2、C【解析】

设的夹角为,两边平方化简即得解.【详解】设的夹角为,两边平方,得,即,又,所以,则,所以.故选C【点睛】本题主要考查平面向量的数量积的计算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.3、D【解析】

取CC1的中点F,连结DF,A1F,EF,推导出四边形BCEF是平行四边形,从而异面直线AE与A1D所成角即为相交直线DF与A1D所成角,由此能求出异面直线AE与A1D所成角的余弦值.【详解】取的中点.连接.因为为棱的中点,所以,所以四边形为平行四边形.所以.故异面直线与所成的角即为相交直线与所成的角.因为,所以.所以.即为直角三角形,从而.故选D【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.4、B【解析】

根据伸缩变换的关系表示已知函数的坐标,代入已知函数的表示式得解.【详解】由伸缩变换,得,代入,得,即.选B【点睛】本题考查函数图像的伸缩变换,属于基础题.5、D【解析】

由三视图还原出原几何体,然后计算其表面积.【详解】由三视图知原几何体是一个圆锥里面挖去一个圆柱,尺寸见三视图.圆锥的母线长为,.故选:D.【点睛】本题考查组合体的表面积,解题关键是由三视图还原出原几何体,确定几何体的结构.6、B【解析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用.7、C【解析】

求函数y=xsinx+cosx的导函数,根据导函数分析出它的单调增区间.【详解】由函数得,=.观察所给的四个选项中,均有,故仅需,结合余弦函数的图像可知,时有,所以答案选C.【点睛】本题主要考查利用导数研究函数的单调性,对于函数,当时,函数单调递增;当时,函数单调递减,这是解题关键.此题属于基础题.8、D【解析】第步从到中选个连续号有种选法;第步从到中选个连续号有种选法;第步从到中选个号有种选法.由分步计数原理可知:满足要求的注数共有注,故至少要花,故选D.9、B【解析】

由题中意思可知,当、元件至少有一个在工作,且元件在工作时,该系统正常公式,再利用独立事件的概率乘法公式可得出所求事件的概率.【详解】由题意可知,该系统正常工作时,、元件至少有一个在工作,且元件在元件,当、元件至少有一个在工作时,其概率为,由独立事件的概率乘法公式可知,该系统正常工作的概率为,故选B.【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,在处理至少等问题时,可利用对立事件的概率来计算,考查计算能力,属于中等题.10、B【解析】分析:先分析出ab<0,a+b<0,再利用作差法比较的大小关系得解.详解:由题得<ln1=0,>.所以ab<0..所以,所以.故答案为B.点睛:(1)本题主要考查实数大小的比较和对数函数的性质,考查对数的运算,意在考查学生对这些知识的掌握水平和基本运算能力.(2)解答本题的关键是对数的运算.11、B【解析】

令,即可求出的值.【详解】解:在所给等式中,令,可得等式为,即.故选:B.【点睛】本题考查二项式定理的展开使用及灵活变求值,特别是解决二项式的系数问题,常采用赋值法,属于中档题.12、D【解析】由题设可得方程组,由,代入,联立两个等式可得,由此解得,应选答案D。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据双曲线的渐近线方程和离心率的关系可得,,再利用基本不等式求解即可.【详解】解:由渐近线方程为可知,,,,,.第一次取等号的条件为,即,第二次取等号的条件为,即.的最小值为.故答案为:.【点睛】本题考查双曲线的方程和基本性质,离心率的求法,基本不等式的应用,属于中档题.14、【解析】

互为反函数的图象关于直线对称,所以两个阴影部分也关于直线对称.利用面积分割和定积分求出上部分阴影面积,再乘以2得到整个阴影面积.【详解】如图所示,连接,易得,,.【点睛】考查灵活运用函数图象的对称性和定积分求解几何概型,对逻辑思维能力要求较高.本题在求阴影部分面积时,只能先求上方部分,下方部分中学阶段无法直接求.15、.【解析】分析:利用几何概型的概率公式进行求解.解析:正方形中随机撒一粒豆子,它落在阴影区域内的概率,∴.点睛:本题考查几何概型的应用,处理几何概型问题的关键在于合理选择几何模型(长度、角度、面积和体积等),一般原则是“一个变量考虑长度、两个变量考虑面积、三个变量考虑体积).16、(1),,(2)().证明见解析【解析】

(1)利用递推式直接求:(2)猜想数列{an}的通项公式为()用数学归纳法证明即可.【详解】解:(1)∵,且,∴,,.(2)猜想数列的通项公式为().用数学归纳法证明如下:①当时,左边,右边,因此,左边=右边.所以,当时,猜想成立.②假设(,)时,猜想成立,即,那么时,.所以,当时,猜想成立.根据①和②,可知猜想成立.【点睛】本题考查了数列中的归纳法思想及证明基本步骤,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】

(1)求导后得,再对分三种情况讨论可得;(2)先由,解得,从而由(1)可得在上为增函数,再将恒成立转化为可解得.【详解】(1)因为,其中,所以.所以,时,所以的单调递增区间为,单调递减区间为;时,所以的单调递减区间为;时,所以的单调递增区间为,单调递减区间为;(2)由题意得,即.由(1)知在内单调递增,要使对恒成立.只要解得.故的取值范围是.【点睛】本题考查了利用导数求函数的单调区间,用导数研究不等式恒成立问题,属中档题.18、(Ⅰ)1;(Ⅱ)【解析】

(Ⅰ)当时求出的单调性,根据单调性即可求出最大值.(Ⅱ)求出的单调性.当时,,单调递增;当时,,单调递减,所以,再判断出的单调性即可.【详解】(Ⅰ)当时,,定义域为..令,得.当时,,单调递增,当时,,单调递减.所以.(Ⅱ),.令,得.当时,,单调递增;当时,,单调递减,所以.依题意有,设,则,所以在上单调递增.又,故,即实数的取值范围为.【点睛】本题考查了利用函数的单调性求最值、求含参数的范围、恒成立的问题.是高考中的必考点,也是高考中的压轴题.在解答时应该仔细审题.19、(1)或;(2)【解析】

(1)先解中不等式,得出取值范围,再利用数轴得到的补集;(2)由必要条件得出是的子集,再通过子集的概念,得出的取值范围.【详解】(1),或.(2)“”是“”的必要条件,则,,解得:,即的取值范围是.【点睛】本题考查集合的基本运算和简易逻辑中的充分条件与必要条件,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将问题转化为集合间的关系.20、(1);(2).【解析】

(1)首先根据题意得到,化简得到,求出,再代入即可.(2)首先化简得到,再利用裂项求和计算即可.【详解】(1)由题知:,即化简得:,,所以..(2)..【点睛】本题第一问考查等差、等比数列的综合,第二问考查裂项求和,属于中档题.21、(1);(2).【解析】分析:(1)求出的解析式,依次计算即可得出猜想;

(2)已知恒成立,即恒成立.设(x≥0),则φ′(x)==-=,对进行讨论,求出的最小值,令恒成立即可;详解:由题设得,g(x)=(x≥0).(1)由已知,g1(x)=,g2(x)=g(g1(x))==,g3(x)=,…,可得gn(x)=.下面用数学归纳法证明.①当n=1时,g1(x)=,结论成立.②假设n=k时结论成立,即gk(x)=.那么,当n=k+1时,gk+1(x)=g(gk(x))==,即结论成立.由①②可知,结论对n∈N+成立.所以gn(x)=.(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)-(x≥0),则φ′(x)==-=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立,∴a≤1时,ln(1+x)≥恒成立(仅当x=0时等号成立).当a>1时,对x∈(0,a-1]有φ′(x)<0,∴φ(x)在(0,a-1]上单调递减,∴φ(a-1)<φ(0)=0,即a>1时,存在x>0,使φ(x)<0,故知ln(1+x)≥不恒成立.综上可知,a的取值范围是(-∞,1].点睛:本题考查了函数的单调性判断与最值计算,数学归纳法证明,分类讨论思想,属于中档题.22、(1)详见解析;(2)5.【解析】试题分析:(1)若要证明AB为圆O的切线,则应连接OC,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论