2022-2023学年北京外国语大学附属中学高二数学第二学期期末统考试题含解析_第1页
2022-2023学年北京外国语大学附属中学高二数学第二学期期末统考试题含解析_第2页
2022-2023学年北京外国语大学附属中学高二数学第二学期期末统考试题含解析_第3页
2022-2023学年北京外国语大学附属中学高二数学第二学期期末统考试题含解析_第4页
2022-2023学年北京外国语大学附属中学高二数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则的最小值是A. B. C. D.2.设为虚数单位,复数满足,则A.1 B. C.2 D.3.平面向量,,(),且与的夹角等于与的夹角,则()A. B. C. D.4.用数学归纳法证明等式时,第一步验证时,左边应取的项是()A.1 B. C. D.5.“所有的倍数都是的倍数,某奇数是的倍数,故该奇数是的倍数.”上述推理()A.大前提错误 B.小前提错误C.结论错误 D.正确6.某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5,6的六个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球,若与第一次取出的两个小球号码相同,则为中奖,按照这样的规则摸奖,中奖的概率为()A. B. C. D.7.用数学归纳法证明:,第二步证明由到时,左边应加()A. B. C. D.8.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为()A. B. C. D.9.当生物死亡后,其体内原有的碳的含量大约每经过年衰减为原来的一半,这个时间称为“半衰期”.在一次考古挖掘中,考古学家发现一批鱼化石,经检测其碳14含量约为原始含量的,则该生物生存的年代距今约()A.万年 B.万年 C.万年 D.万年10.已知的展开式中各项系数和为2,则其展开式中含项的系数是()A.-40 B.-20 C.20 D.4011.已知集合,,若,则等于()A.1 B.2 C.3 D.412.已知抛物线的焦点为F,过点F分别作两条直线,直线与抛物线C交于两点,直线与抛物线C交于点,若与直线的斜率的乘积为,则的最小值为()A.14 B.16 C.18 D.20二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是____.14.下表提供了某学生做题数量x(道)与做题时间y(分钟)的几组对应数据:x(道)3456y(分钟)2.5t44.5根据上表提供的数据,得y关于x的线性回归方程为则表中t的值为_____.15.已知正项数列{an}满足,若a1=2,则数列{an}的前n项和为________.16.已知,为锐角,,,则的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,二面角的大小为,四边形是边长为的正方形,,为上的点,且平面.(1)求证:;(2)求二面角的大小;(3)求点到平面的距离.18.(12分)如图,在多面体中,底面为菱形,底面,.(1)证明:平面;(2)若,,当长为多少时,平面平面.19.(12分)某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)(1)根据以上数据完成下列的列联表;(2)能否有99%的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析.主食蔬菜主食肉类合计50岁以下50岁以上合计参考公式:0.050.0250.0100.0050.0013.8415.0246.6357.87910.82820.(12分)一盒中放有的黑球和白球,其中黑球4个,白球5个.(1)从盒中同时摸出两个球,求两球颜色恰好相同的概率;(2)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.21.(12分)已知数列满足,,.(1)求,,;(2)判断数列是否为等比数列,并说明理由.22.(10分)高二年级数学课外小组人:(1)从中选一名正组长和一名副组长,共有多少种不同的选法?(2)从中选名参加省数学竞赛,有多少种不同的选法?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

将代数式与代数式相乘,展开后利用基本不等式求出代数式的最小值,然后在不等式两边同时除以可得出答案.【详解】因为,又,所以,当且仅当时取,故选B.【点睛】本题考查利用基本不等式求代数式的最值,在利用基本不等式求最值时,要注意配凑“定值”的条件,注意“一正、二定、三相等”基本思想的应用.2、B【解析】

利用复数代数形式的乘除运算,再由复数的模的计算公式求解即可.【详解】由,得,,故选.【点睛】本题主要考查复数代数形式的乘除运算以及复数的模的计算.3、D【解析】

,,,与的夹角等于与的夹角,,,解得,故选D.【考点定位】向量的夹角及向量的坐标运算.4、D【解析】由数学归纳法的证明步骤可知:当时,等式的左边是,应选答案D.5、D【解析】

分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论是否都正确,根据三个方面都正确,得到结论.详解:∵所有9的倍数都是3的倍数,某奇数是9的倍数,故某奇数是3的倍数,大前提:所有9的倍数都是3的倍数,小前提:某奇数是9的倍数,结论:故某奇数是3的倍数,∴这个推理是正确的,故选D.点睛:该题考查的是有关演绎推理的定义问题,在解决问题的过程中,需要先分清大前提、小前提和结论分别是什么,之后结合定义以及对应的结论的正确性得出结果.6、B【解析】

可将中奖的情况分成第一次两球连号和第二次取出的小球与第一次取出的号码相同两种情况,分别计算两种情况的概率,根据和事件概率公式可求得结果.【详解】中奖的情况分为:第一次取出两球号码连号和第二次取出两个小球与第一次取出的号码相同两种情况第一次取出两球连号的概率为:第二次取出两个小球与第一次取出号码相同的概率为:中奖的概率为:本题正确选项:【点睛】本题考查和事件概率问题的求解,关键是能够根据题意将所求情况进行分类,进而通过古典概型和积事件概率求解方法求出每种情况对应的概率.7、D【解析】

当成立,当时,写出对应的关系式,观察计算即可得答案.【详解】在第二步证明时,假设时成立,即左侧,则成立时,左侧,左边增加的项数是,故选:D.【点睛】本题考查数学归纳法,考查到成立时左边项数的变化情况,考查理解与应用的能力,属于中档题.8、C【解析】试题分析:将5张奖票不放回地依次取出共有种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有种取法,∴考点:古典概型及其概率计算公式9、C【解析】

根据实际问题,可抽象出,按对数运算求解.【详解】设该生物生存的年代距今是第个5730年,到今天需满足,解得:,万年.故选C.【点睛】本题考查了指数和对数运算的实际问题,考查了转化与化归和计算能力.10、D【解析】

由题意先求得a=﹣1,再把(2x+a)5按照二项式定理展开,即可得含x3项的系数.【详解】令x=1,可得(x+1)(2x+a)5的展开式中各项系数和为2•(2+a)5=2,∴a=﹣1.二项式(x+1)(2x+a)5=(x+1)(2x﹣1)5=(x+1)(32x5﹣80x4+80x3﹣40x2+10x﹣1),故展开式中含x3项的系数是﹣40+80=40故选D.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.11、D【解析】

由已知可得,则.【详解】由,得或又由,得,则,即故选:D【点睛】本题考查了集合的并集运算,属于基础题.12、B【解析】

设出直线的斜率,得到的斜率,写出直线的方程,联立直线方程和抛物线方程,根据弦长公式求得的值,进而求得最小值.【详解】抛物线的焦点坐标为,依题意可知斜率存在且不为零,设直线的斜率为,则直线的斜率为,所以,有,有,,故,同理可求得.故,当且仅当时,等号成立,故最小值为,故选B.【点睛】本小题主要考查直线和抛物线的位置关系,考查直线和抛物线相交所得弦长公式,考查利用基本不等式求最小值,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】

注意到,.则.易知,在区间上单调递增,在区间上单调递减,在处取得最小值.故,且在区间上单调递增.,,.当、在区间上只有一个交点,即的图像与的图像相切时,取最大值.不妨设切点坐标为,斜率为①又点在上,于是,②联立式①、②解得,.从而,.14、3【解析】

现求出样本的中心点,再代入回归直线的方程,即可求得的值.【详解】由题意可得,因为对的回归直线方程是,所以,解得.【点睛】本题主要考查了回归直线方程的应用,其中解答的关键是利用回归直线方程恒过样本中心点,代入求解,着重考查了推理与计算能力,属于基础题.15、.【解析】

先化简得到数列{an}是一个等比数列和其公比,再求数列{an}的前n项和.【详解】因为,所以,因为数列各项是正项,所以,所以数列是等比数列,且其公比为3,所以数列{an}的前n项和为.故答案为:【点睛】(1)本题主要考查等比数列性质的判定,考查等比数列的前n项和,意在考查学生对这些知识的掌握水平.(2)解答本题的关键是得到.16、【解析】试题分析:依题意,所以,所以.考点:三角恒等变换.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3).【解析】试题分析:(1)由平面可证,由二面角为直二面角及是正方形可证,再由线面垂直判定定理得平面,即可得证;(2)取的中点,连接,,由四边形为正方形可证,,即可得为二面角的平面角,根据题设条件求出及,即可得二面角的余弦值;(3)利用等体积法,由即可得点到平面的距离.试题解析:(1)∵平面,∴.又∵二面角为直二面角,且,∴平面,∴,∴平面,∴.(2)取的中点,连接,.∵四边形为正方形,∴,∴,即为二面角的平面角,又,∴,由(1)知,且,∴,∴,由,解得,∴,即∴,即二面角的余弦值为.(3)取的中点,连接,∵,二面角为直二面角,∴平面,且.∵,,∴平面,∴,∴,又,由,得,∴.点睛:立体几何的证明需要对证明的逻辑关系清楚,证明线线垂直,先由线面垂直得到线线垂直,再由线线垂直证明线面垂直;用普通法求二面角,讲究“一作、二证、三求”,通过辅助线先把二面角的平面角及计算所需线段作出来,再证明所作角是二面角的平面角;点到面的距离还原到体积问题,则利用等体积法解题.18、(1)证明见解析;(2)1【解析】

(1)先证明面面,从而可得平面.

(2)设的中点为,以为原点,,,分别为,,轴,建立坐标系,设,易知平面的法向量为,求出平面的法向量,根据法向量垂直可求解.【详解】证明:(1):∵,面,面,∴面.同理面,又,面,面,∴面面,又面,∴平面.(2)∵,,∴,设的中点为,连接,则.以为原点,,,分别为,,轴,建立坐标系.则,,,令,则,,.设平面的法向量为,则,即,令,则,∴.易知平面的法向量为,当平面平面时,,解之得.所以当时,平面平面.【点睛】本题考查线面平行的证明和根据面面垂直求线段的长度,属于中档题.19、(1)见解析(2)能,理由见解析【解析】

(1)完善列联表得到答案.(2)计算得到,比较数据得到答案.【详解】(1)主食蔬菜主食肉类合计50岁以下481250岁以上16218合计201030(2),有99%的把握认为亲属的饮食习惯与年龄有关.【点睛】本题考查了列联表,独立性检验,意在考查学生的计算能力和应用能力.20、(1)(2)【解析】

(1)先求从盒中同时摸出两个球时的总事件数,再求两球颜色恰好相同的事件数,最后根据古典概型概率公式求解;(2)先求从盒中摸出一个球,放回后再摸出一个球的总事件数,再求两球颜色恰好不同的事件数,最后根据古典概型概率公式求解.【详解】解:①②【点睛】本题考查古典概型概率,考查基本分析求解能力,属基础题21、(1),,.(2)是首项为,公比为的等比数列;理由见解析.【解析】分析:(1)先根据递推关系式求,,;,再求,,;(2)根据等比数列定义证明为等比数列.详解:(1)由条件可得:,将代入,得,而,∴,将代入,得,∴,∴,,.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论