




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.有11名同学参加100米赛跑,预赛成绩各不相同,要取前6名参加决赛,小明已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这11名同学成绩的()A.中位数 B.平均数 C.众数 D.方差2.如图,在菱形ABCD中,AB=16,∠B=60°,P是AB上一点,BP=10,Q是CD边上一动点,将四边形APQD沿宜线PQ折叠,A的对应点A'.当CA'的长度最小时,则CQA.10 B.12 C.13 D.143.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,则BG的长为()A.5 B.4 C.3 D.24.在一个直角三角形中,已知两直角边分别为6cm,8cm,则下列结论不正确的是()A.斜边长为10cm B.周长为25cmC.面积为24cm2 D.斜边上的中线长为5cm5.如图,与的形状相同,大小不同,是由的各顶点变化得到的,则各顶点变化情况是()A.横坐标和纵坐标都乘以2 B.横坐标和纵坐标都加2C.横坐标和纵坐标都除以2 D.横坐标和纵坐标都减26.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环方差/环请你根据表中数据选一人参加比赛,最合适的人选是()A.甲 B.乙 C.丙 D.丁7.若n边形的内角和等于外角和的2倍,则边数n为()A.n=4 B.n=5 C.n=6 D.n=78.下列算式中,正确的是A. B.C. D.9.某组数据的方差中,则该组数据的总和是()A.20 B.5 C.4 D.210.如图,在正方形ABCD中,AB=10,点E、F是正方形内两点,AE=FC=6,BE=DF=8,则EF的长为()A. B. C. D.311.七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是a,中位数是b,众数是c,则有()A.c>b>a B.b>c>a C.c>a>b D.a>b>c12.已知反比例函数图像经过点(2,—3),则下列点中必在此函数图像上的是()A.(2,3) B.(1,6) C.(—1,6) D.(—2,—3)二、填空题(每题4分,共24分)13.直角中,,、、分别为、、的中点,已知,则________.14.如图,点A是函数y=kx(x<0)的图像上的一点,过点A作AB⊥y轴,垂足为点B,点C为x轴上的一点,连接AC,BC,若△ABC的面积为4,则15.若一次函数的函数值随的增大而增大,则的取值范围是_____.16.如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,若,则=___.17.在平面直角坐标系中,正比例函数与反比例函数的图象交于点,则_________.18.若甲、乙、丙、丁四个同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为s甲2=0.80,s乙2=1.31,s丙2=1.72,s丁2=0.42,则成绩最稳定的同学是______.三、解答题(共78分)19.(8分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.20.(8分)某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:医疗费用范围报销比例标准不超过8000元不予报销超过8000元且不超过30000元的部分50%超过30000元且不超过50000元的部分60%超过50000元的部分70%设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.(1)直接写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?21.(8分)已知:在中,,为的中点,,,垂足分别为点,且.求证:是等边三角形.22.(10分)如图,在5×5的正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形.(1)画线段AC,使它的另一个端点C落在格点(即小正方形的顶点)上,且长度为;(2)以线段AC为对角线,画凸四边形ABCD,使四边形ABCD既是中心对称图形又是轴对称图形,顶点都在格点上,且边长是无理数;(3)求(2)中四边形ABCD的周长和面积.23.(10分)当k值相同时,我们把正比例函数与反比例函数叫做“关联函数”.(1)如图,若k>0,这两个函数图象的交点分别为A,B,求点A,B的坐标(用k表示);(2)若k=1,点P是函数在第一象限内的图象上的一个动点(点P不与B重合),设点P的坐标为(),其中m>0且m≠2.作直线PA,PB分别与x轴交于点C,D,则△PCD是等腰三角形,请说明理由;(3)在(2)的基础上,是否存在点P使△PCD为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.24.(10分)如图①,已知△ABC中,∠BAC=90°,AB="AC,"AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E.(1)求证:BD=DE+CE.(2)若直线AE绕A点旋转到图②位置时(BD<CE),其余条件不变,问BD与DE、CE的数量关系如何?请给予证明;(3)若直线AE绕A点旋转到图③位置时(BD>CE),其余条件不变,问BD与DE、CE的数量关系如何?请直接写出结果,不需证明.(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系.25.(12分)四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.(1)观察图象,直接写出日销售量的最大值;(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.(3)试比较第6天和第13天的销售金额哪天多?26.四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_____________;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负。你认为这个游戏是否公平?请说明理由。
参考答案一、选择题(每题4分,共48分)1、A【解析】
由于有11名同学参加预赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】解:共有11名学生参加预赛,取前6名,所以小明需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第6名学生的成绩是这组数据的中位数,所以小明知道这组数据的中位数,才能知道自己是否进入决赛.故选A.【点睛】本题考查了统计量的选择,解题的关键是学会运用中位数的意义解决实际问题.2、D【解析】
由A′P=6可知点A′在以P为圆心以PA′为半径的弧上,故此当C,P,A′在一条直线上时,CA′有最小值,过点C作CH⊥AB,垂足为H,先求得BH、HC的长,则可得到PH的长,然后再求得PC的长,最后依据折叠的性质和平行线的性质可证明△CQP为等腰三角形,则可得到QC的长.【详解】由A′P=6可知点A′在以P为圆心以PA′为半径的弧上,故此当C,P,A′在一条直线上时,CA′有最小值,过点C作CH⊥AB,垂足为H.在Rt△BCH中,∠B=60°,BC=16,则BH=12BC=8,CH=162-∴PH=1.在Rt△CPH中,依据勾股定理可知:PC=(83)由翻折的性质可知:∠APQ=∠A′PQ.∵DC∥AB,∴∠CQP=∠APQ.∴∠CQP=∠CPQ.∴QC=CP=2.故选:D.【点睛】本题主要考查的是两点之间线段最短、菱形的性质、勾股定理的应用,翻折的性质、等腰三角形的判定,判断出CA′取得最小值的条件是解题的关键.3、B【解析】分析:利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;详解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,AG=AG,AB=AF,∴Rt△ABG≌Rt△AFG(HL),∴BG=GF,∵E是边CD的中点,∴DE=CE=6,设BG=x,则CG=12-x,GE=x+6,∵GE2=CG2+CE2,∴(x+6)2=(12-x)2+62,解得:x=1,∴BG=1.故选B.点睛:此题主要考查了全等三角形的判定和性质,勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.4、B【解析】试题解析:∵在一个直角三角形中,已知两直角边分别为6cm,8cm,∴直角三角形的面积=×6×8=24cm2,故选项C不符合题意;∴斜边故选项A不符合题意;∴斜边上的中线长为5cm,故选项D不符合题意;∵三边长分别为6cm,8cm,10cm,∴三角形的周长=24cm,故选项B符合题意,故选B.点睛:直角三角形斜边的中线等于斜边的一半.5、A【解析】
根据题意得:△OAB∽△OAB,然后由相似三角形的对应边成比例,求得答案.【详解】根据题意得:△OAB∽△OAB,∵O(0,0),A(2,1),B(1,3),B点的坐标为(2,6),A(4,2)∴横坐标和纵坐标都乘以2.故选A.【点睛】此题考查坐标与图形性质,相似三角形的性质,解题关键在于利用相似三角形的对应边成比例6、A【解析】
根据方差的意义求解可得.【详解】∵四人的平均成绩相同,而甲的方差最小,即甲的成绩最稳定,
∴最合适的人选是甲,
故选:A.【点睛】本题考查方差,解答本题的关键是明确题意,掌握方差的意义.7、C【解析】
由题意得(n-2)×180=360×2,解得n=6,故选C.8、C【解析】
根据二次根式的混合运算法则逐一计算即可判断.【详解】解:A.,此选项错误;B.,此选项错误;C.,此选项正确;D.,此选项错误;故选:C.【点睛】本题考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算法则.9、A【解析】
样本方差,其中是这个样本的容量,是样本的平均数.利用此公式直接求解.【详解】由知共有5个数据,这5个数据的平均数为4,
则该组数据的总和为:4×5=20,
故选:A.【点睛】本题主要考查方差,解题的关键是掌握方差的计算公式及公式中的字母所表示的意义.10、B【解析】
延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=8,由AE=6,得出EG=2,同理得出GF=2,再根据勾股定理得出EF的长.【详解】延长AE交DF于G,如图:∵AB=10,AE=6,BE=8,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=8,DG=AE=6,∴EG=2,同理可得:GF=2,∴EF=,故选B.【点睛】此题考查正方形的性质、勾股定理,解题关键在于作辅助线.11、D【解析】
根据将所有数据加在一起除以数据的个数就能得到该组数据的平均数;排序后找到中间两数的平均数即为该组数据的中位数;观察后找到出现次数最多的数即为该组数据的众数,即可求出答案.【详解】该组数据的平均数为:a=(150+140+100+110+130+110+120)÷7=122.86,
将该组数据排序为:100,110,110,120,130,140,150,
该组数据的中位数为:b=120;
该组数据中数字110出现了2次,最多,
该组数据的众数为:c=110;
则a>b>c;
故选D.【点睛】本题考查众数、算术平均数和中位数,解题的关键是掌握众数、算术平均数和中位数的求解方法.12、C【解析】
先根据反比例函数经过点(2,-3)求出k的值,再对各选项进行逐一分析即可.【详解】∵反比例函数经过点(2,-3),∴k=2×-3=-1.A、∵2×3=1≠-1,∴此点不在函数图象上,故本选项错误;B、∵1×1=1≠-1,∴此点不在函数图象上,故本选项错误;C、∵(-1)×1=-1,∴此点在函数图象上,故本选项正确;D、∵(-2)×(-3)=1≠-1,∴此点不在函数图象上,故本选项错误.故选C.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(每题4分,共24分)13、3【解析】
由三角形中位线定理得到DF=BC;然后根据直角三角形斜边上的中线等于斜边的一半得到AE=BC,则DF=AE.【详解】∵在直角△ABC中,∠BAC=90°,D.
F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE=3.故答案为3.【点睛】本题考查了三角形中位线定理和直角三角形斜边上的中线.熟记定理是解题的关键.14、-1【解析】
连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到12|k|=4,然后去绝对值即可得到满足条件的【详解】解:连结OA,如图,
∵AB⊥y轴,
∴OC∥AB,
∴S△OAB=S△ABC=4,
而S△OAB=12|k|,
∴12|k|=4,
∵k<0,
∴k=-1.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx(x<0)图象中任取一点,过这一个点向x轴和y15、k>2【解析】
试题分析:本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.【详解】根据题意可得:k-2>0,解得:k>2.【点睛】考点:一次函数的性质;一次函数的定义16、【解析】
根据等边三角形的性质就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=∠BDC,由等腰直角三角形的性质就可以得出∠ADB=90°,由勾股定理就可以得出:,再设AE=k,则AD=3k,BD=k,求出BC=k,进而得到的值.【详解】∵△ACB与△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,∴,∠ECD−∠ACD=∠ACB−∠ACD,∴∠ACE=∠BCD.在△AEC和△BDC中,,∴△AEC≌△BDC(SAS),∴AE=BD,∠E=∠BDC,∴∠BDC=45°,∴∠BDC+∠ADC=90°,即∠ADB=90°.∴.∵,∴可设AE=k,则AD=3k,BD=k,∴,∴BC=,∴.故答案为:.【点睛】此题考查勾股定理、等腰直角三角形、全等三角形的判定与性质,解题关键在于“设k法”列出比例式即可.17、【解析】
把代入可得:解得得,再把代入,即,解得.【详解】解:把代入可得:解得,∴∵点也在图象上,把代入,即,解得.故答案为:8【点睛】本题考查了一次函数和反比例函数,掌握待定系数法求解析式是关键.18、丁【解析】
首先比较出S甲2、S乙2、S丙2、S丁2的大小关系,然后根据方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越,小,稳定性越好,判断出成绩最稳定的同学是谁即可.【详解】∵S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,∴S丁2<S甲2<S乙2<S丙2,∴成绩最稳定的是丁,故答案为:丁.【点睛】此题主要考查了方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.三、解答题(共78分)19、(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用20、(1)①当x≤8000时,y=0;②当8000<x≤30000时,y=0.5x﹣4000;③当30000<x≤50000时,y=0.6x﹣7000;(2)1元.【解析】
(1)首先把握x、y的意义,报销金额y分3段①当x≤8000时,②当8000<x≤30000时,③当30000<x≤50000时分别表示;(2)利用代入法,把y=20000代入第三个函数关系式即可得到x的值.【详解】解:(1)由题意得:①当x≤8000时,y=0;②当8000<x≤30000时,y=(x﹣8000)×50%=0.5x﹣4000;③当30000<x≤50000时,y=(30000﹣8000)×50%+(x﹣30000)×60%=0.6x﹣7000;(2)当花费30000元时,报销钱数为:y=0.5×30000﹣4000=11000,∵20000>11000,∴他的住院医疗费用超过30000元,当花费是50000元时,报销钱数为:y=11000+20000×60%=23000(元),故花费小于5万元,故把y=20000代入y=0.6x﹣7000中得:20000=0.6x﹣7000,解得:x=1.答:他住院医疗费用是1元.【点睛】本题考查一次函数的应用;分段函数.21、证明见解析.【解析】分析:由等腰三角形的性质得到∠B=∠C.再用HL证明Rt△ADE≌Rt△CDF,得到∠A=∠C,从而得到∠A=∠B=∠C,即可得到结论.详解:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为的AC中点,∴DA=DC.又∵DE=DF,∴RtΔAED≌RtΔCDF(HL),∴∠A=∠C,∴∠A=∠B=∠C,∴ΔABC是等边三角形.点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质.解题的关键是证明∠A=∠C.22、(1)见解析(2)见解析(3)4,15【解析】
(1)根据勾股定理即可作图;(2)根据题意作出菱形即可;(3)根据菱形的性质即可求解.【详解】(1)线段AC如图所示;(2)四边形ABCD如图所示;(3)由勾股定理得AB=BD=所以周长为4面积为【点睛】此题主要考查勾股定理的应用,解题的关键是数轴菱形的性质.23、(1)点A坐标为(-k,-1),点B坐标(k,1);(2)△PCD是等腰三角形;,理由见解析;(3)不存在,理由见解析.【解析】
(1)联立两个函数解析式即可;(2)先求出点C和点D的坐标,然后根据两点距离公式得到PC=PD即可;(3)过点P作PH⊥CD于H,根据等腰直角三角形的性质可得CD=2PH,可求m的值;然后再点P不与B重合即可解答.【详解】解:(1)∵两个函数图象的交点分别为点A和点B,∴,解得:或∴点A坐标为(-k,-1),点B坐标(k,1);(2)△PCD是等腰三角形,理由如下:∵k=1∴点A和点B的坐标为(-1,-1)和(1,1),设点P的坐标为(m,)∴直线PA解析式为:∵当y=0时,x=m-1,∴点C的坐标为(m-1,0)同理可求直线PB解析式为:∵当y=0时,x=m+1,∴点D的坐标为(m+1,0)∴,∴PC=PD∴△PCD是等腰三角形;(3)如图:过点P作PH⊥CD于H∵△PCD直角三角形,PH⊥CD,∴CD=2PH,∴m+1-(m-1)=2×,解得m=1∴点P的坐标为(1,1),∵点B(1,1)与点函数在第一象限内的图象上的一个动点P不重合∴不存在点P使△PCD为直角三角形.【点睛】本题属于反比例函数综合题,主要考查了反比例函数的性质、等腰直角三角形的性质、两点距离公式等知识点,掌握反比例函数的性质是解答本题的关键.24、(1)、证明过程见解析;(2)、BD=DE–CE;证明过程见解析;(3)、BD=DE–CE;(4)、当B,C在AE的同侧时,BD=DE–CE;当B,C在AE的异侧时,BD=DE+CE.【解析】
(1)、根据垂直得出∠ADB=∠CEA=90°,结合∠BAC=90°得出∠ABD=∠CAE,从而证明出△ABD和△ACE全等,根据全等得出BD=AE,AD=EC,然后得出答案;(2)、根据第一题同样的方法得出△ABD和△ACE全等,根据全等得出BD=AE,AD=EC,然后得出结论;(3)、根据同样的方法得出结论;(4)、根据前面的结论得出答案.【详解】(1)∵BD⊥AE,CE⊥AE∴∠ADB=∠CEA=90°∴∠ABD+∠BAD=90°又∵∠B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小额放贷公司合同范本
- 按揭车转让合同范本
- 液晶聚合物LCP战略市场规划报告
- 数字电视调制器产业分析报告
- 借钱担保合同范本
- 厂区电线维修合同范本
- 付费摄影合同范本
- 新余小学英语试卷
- 中医工作计划
- 个体户减税申请书
- 富血小板血浆(PRP)临床实践与病例分享课件
- 跨文化交际教程 课件 杜平 Unit 1 Cultural Awareness and Intercultural Communication-Unit 3 Nonverbal Communication
- 光伏工程施工组织设计
- 社保知识竞赛考试题及答案
- 华为HCSA-Presales-IT售前认证备考试题及答案
- 2024-2030年中国纤维板行业发展趋势与投资战略研究报告
- 小学二年级上册数学思维训练题100道及答案解析
- 2024年品酒师职业技能大赛理论考试题库及答案
- 2024-2025学年全国中学生天文知识竞赛考试题库(含答案)
- 2024至2030年中国细胞农业动向追踪与发展前景现状探索报告
- 2025初级社会工作实务考试要点速记
评论
0/150
提交评论