现代数字信号处理Advanced Digital Signal Processing-ch5 wavel_第1页
现代数字信号处理Advanced Digital Signal Processing-ch5 wavel_第2页
现代数字信号处理Advanced Digital Signal Processing-ch5 wavel_第3页
现代数字信号处理Advanced Digital Signal Processing-ch5 wavel_第4页
现代数字信号处理Advanced Digital Signal Processing-ch5 wavel_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AdvancedDigitalSignalProcessing

(ModernDigitalSignalProcessing)

Chapter5Time-FrequencyAnalysisandWaveletTransform

编辑pptGeneralexpression5.1LinearTransformInnerproduct

编辑pptWave&WaveletTransformWavesWavesarenon-compact(infinite)supportfunctionsNon-compactsupportfunction:Thefunctionsextendtoinfinityinbothdirections.编辑pptWaveletsWaveletsarecompact(finite)supportfunctions.TheyvarywithfrequencyaswellaspositionCompactsupportfunction:Thefunctionsareinalimitduration.编辑pptWave&wavelettransformwaveswaveletsWavetransform(wide-sense)wavelettransform编辑pptOrthogonaltransformOrthogonalbasisfunctionOrthogonal(orthonormal)transformIfc=1,theng(ω,t)isorthonormalbasisfunction.编辑pptUnderstandingofthe(orthogonal)transformIntuitiveinterpretationoforthogonaltransformForagivenωi,Iff(t)isorthogonalwithg(ωi,t),thenF(ωi)=0,i.e.thereisnocomponentcorrespondingtothebasisg(ωi,t)inf(t).Otherwise,thecomponentsoff(t)correspondingtothebasisg(ωi,t)willcomposeF(ωi)inωspace.Ontheotherhand,thecomponentsoff(t)correspondingtothebasisg(ωi,t)isorthogonalwithanybasisg(ωj,t),i≠jandwillcontributenothingtoF(ωj).Decompositioneffect编辑pptGeometricinterpretationoforthogonaltransformNon-orthogonaltransform

Theorthogonaltransformoff(t)isaprojectionoff(t)intoaorthogonalbasisspaceformedby{g(ωi,t)},i=1,2,…OrthogonalProjectionNon-OrthogonalProjectionThesamecomponentoff(t)mayprojectintodifferentbases.Redundancywillprobablyexistinthetransformresults.编辑pptFouriertransform(FT)i.e.theFTisanorthonormalwavetransform.编辑pptNon-Stationary(Time-Variant)SignalStationary(time-invariant)signal编辑pptNon-stationary(time-variant)signal

x1(t)

x2(t)x3(t)x4(t)编辑pptFTofnon-stationary(time-variant)signalSignalsaredifferent,butspectrumsaresimilar编辑pptDeficiencyofwavetransform(e.g.FT)Wavetransformsarenotsuitablefortime-variantsignalsincetheydon’tincludeposition(time)informationinthetransformresults(e.g.FTanalyzestheglobalfrequencydistributionofasignal,butitcannotcharacterizethelocalbehaviorofthesignal).编辑pptBasicIdea5.2Time-FrequencyAnalysisInFT,thelocalbehaviorofasignalisnotrepresentedinthesignal’sfrequencyspectrumTheFTisnotthemostproperrepresentationforthetime-variantsignalsorthesignalscontainingtransientorlocalizationcomponentsTime-frequencyanalysis:characterizingthetimeandfrequencyinformationofasignalsimultaneouslyinitsspectrum编辑pptExamplesofTime-FrequencyAnalysis编辑ppt编辑pptMainToolsofTime-FrequencyAnalysisShorttimeFouriertransform(STFT)WavelettransformWignerdistribution(WD)Quadrictransform(non-lineartransform)Time-frequencydistributionWiger-Villedistribution(non-stationaryrandomsignal)编辑pptDefinitionSTFTofcontinuoustimesignalx(t)STFTofdiscretetimesignalx(n)5.3ShortTimeFourierTransformwherew(t)isarealfinite-widthwindowfunctionwhichslidesalongx(t)

wherew(n)isarealfinite-lengthwindowsequencewhichslidesalongx(n)

编辑pptTheresultofSTFTisa2-Dfunctionwhichreflectsthesignalspectrumvariedwithtime.FTofWindowedx(t)编辑pptisacompactsupportfunction(wavelet),andTheSTFTisWide-sensewavelettransformThesupportwidthofthewavelet(i.e.thewidthofthewindow)isconstantforallfrequencycomponents.编辑pptTheConflictingRequirementsbetweentheFrequencyResolution&theTimeResolutioninSTFTFrequencyresolutionrequirementThewindowwidthTshouldbewideenoughtogivethedesiredfrequencyresolution.TimeresolutionrequirementThewindowwidthTshouldbenarrowenoughsoasnottoblurthetimedependentevents,i.e.thesignalsegmentincludedinthewindowcanbetreatedasstationaryapproximately.编辑ppt编辑pptPartitionoftime-frequencyplaneinSTFTt编辑pptProblemsofSTFTHeisenberguncertaintyprincipleSTFTisredundantrepresentation

NotgoodforcompressionThesameandtthroughttheentireplane!

Wecannotperfectlylocalizeeventsintimeandfrequencysimultaneously!编辑pptMulti-ResolutionAnalysis(MRA)BasicideaThehighfrequencycomponentsvaryrapidlyintime.Arelativelyshortsignalsegmentcancharacterizethemproperly,hencearelativelynarrowtimewindowcanbeused(hightimeresolutionandlowfrequencyresolution).Oncontrary,thelowfrequencycomponentsvaryslowlyintimeandarelativelywidetimewindowshouldbeused(highfrequencyresolutionandlowtimeresolution).Higherfrequency

Morenarrowtimewindow

Lowerfrequency

Widertimewindow

Highertimeresolution

Higherfrequencyresolution

编辑ppt编辑pptPartitionoftime-frequencyplaneMRA

Differenttimeandfrequencyresolutionsareadoptedtothedifferentfrequency(scale)componentsofsignalatsametime编辑ppt5.4ContinuousWaveletTransform(CWT)DefinitionCWT

whereismother(basis)waveletwhichsatisfies编辑pptScaling&translationofmotherwavelet

whereaisscaling(dilation)parameterandbistranslation(shifting)parameter.isthebasisfunctionofCWT.Itiscalledtheanalysiswavelet.编辑pptScaling(dilation)编辑pptTranslation(shifting)编辑pptScalingandtranslation编辑pptRepresentingCWTinFrequencyDomain编辑pptIfthecentralfrequencyoftheFTofisω0,anditsbandwidthisB,

thenthecentralfrequencyandbandwidthoftheFTofareω0/aandB/arespectively,i.e.PropertiesofwaveletFrequencyspectrumanalysisabilityIfthewaveletisaband-passfilterwithrelativelynarrowpassband,thenthewaveletwithdifferentacancharacterizethedifferentfrequencycomponentsofasignal.Constantqualityfactor编辑pptInverseCWT

(ICWT)AdmissibleconditionwhereistheFTofThesatisfiestheadmissibleconditionisaadmissiblewavelet.Abasicrestrictionforconstructingamotherwavelet

编辑pptICWT编辑pptExamplesofMotherWavelets编辑pptPropertiesofCWTLinearityTimeshifting

编辑pptScalingMoyaltheorem(innerproducttheorem)

EnergyofWT

编辑pptReproducingkernelequationICWTReproducingkernel:thedependencebetween编辑pptRedundancyofCWTReproducingkernelequation编辑ppt5.5DiscreteWaveletTransform(DWT)DefinitionDiscretizingoftheScaling&TranslationFactor

mother(basis)waveletBasiswithlargerscaleLowersamplingrate编辑pptDWT

:DWTorwaveletseriesUsually,areadopted,then编辑pptWaveletFrameRequirementsforDiscreteWaveletBasisCompleteness

Cancharacterizethex(t)completely?ReversibilityCanx(t)berestoredfromstably?UniversalityWhetheranyx(t)canberepresentedbyalinearcombinationofthewaveletbasis编辑pptCompletenessUniquenesscontinuity编辑pptReversibilityUniquenesscontinuity编辑pptFrameLetbeaclusteroffunctionsinHilbertspaceH,ifforanyfunction,itisheldthatthenisaframe. Moreover,ifA=B,thenisatightframeand编辑pptIfA=B=1,then,henceisasetoforthogonalbasesinHspace.Suchasetofbasesisorthonormal

if编辑pptDualframe

wheresatisfiesRestoringanditiscalledthedualframeof编辑pptForconvenience,whenA≠Bbut,itisusuallyapproximatedaswhereIfA=B,then编辑pptWaveletframeIfforanyfunctionx(t),thewaveletbasisfunctionsatisfiesthenisawaveletframe.Itsdualwaveletframeiswhichsatisfies编辑pptIfA=B,thenorIfA≠B,thenand编辑ppti.e.isanadmissiblewavelet.Ifisawaveletframe,thenitmeetsthethreerequirementsfordiscretewaveletbasisproposedbefore,and编辑pptDesigningOrthonormalWaveletBasiswithMRAOrthogonalwaveletbasis:removingtheinformationredundancyinthedataaftertransformation

thenisorthogonal,andifC=A,thenisorthonormal.IfReproducingkernelequationinDWTwithtightframe:编辑pptMRAdisse

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论